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NEUTRON DIFFRACTION

TECHNIQUES FOR STRUCTURAL
STUDIES OF GLASSES
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ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot,
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5.1 INTRODUCTION

Neutron diffraction (ND) is an important experimental technique for the investigation
of the structure of glasses. It can be used to study oxide glasses, chalcogenide glasses,
metallic glasses, amorphous semiconductors, molecular glasses, amorphous polymers,
organic glasses, and so on. An ND experiment yields a measurement of the distribution
of interatomic distances that can be more accurate than for any other experimental
method. The shortest distances in the glass (the short range order, SRO) can be
characterized in terms of coordination numbers, bond lengths, and other short distances.
These can be measured very accurately by ND, and used to determine the coordination
polyhedra that form the basis of the glass structure. The way in which these units
connect together (the intermediate range order, IRO) is also probed by ND, although in
a more subtle way, and its investigation usually requires some kind of modeling of the
ND results. The results of an ND experiment can be predicted exactly for a structural
model, and hence ND provides a rigorous test of structural models.

The main aim of this chapter is to provide empirical information to enable a new
researcher, such as a research student, to plan and perform an ND investigation of the
structure of glass samples, to analyze the experimental data, and to begin to interpret
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the results. A brief outline is given of the theory of ND for glasses; particular emphasis
is given to subjects such as incoherent scattering, which new researchers tend to find
especially troubling. The study of glass structure by ND is best not considered in
isolation, but instead in the wider context of both the study of other types of material, and
the use of other techniques to study glass structure. Therefore, whilst the main emphasis
of this chapter is very much on ND from glasses, this is set in the wider context of liquid
and crystalline materials when relevant; the experimental approaches described here can
also be of use in the study of these other types of material. It is also worth mentioning
that there are other neutron scattering techniques of use in the study of glass, such
as inelastic scattering and quasi-elastic scattering, which are beyond the scope of this
chapter.

5.2 INSTRUMENTATION

5.2.1 The Neutron

The neutron was discovered relatively recently by Chadwick in 1932, for which he
received the Nobel Prize for physics in 1935. Soon after that, Fermi received the Nobel
Prize in physics for studies of the interactions between neutrons and matter, but it
was many years before the Nobel Prize in physics was belatedly awarded to Brock-
house and Schull for the development of neutron scattering techniques for studies of
condensed matter. It is useful to consider the properties of the neutron, as given in
Table 5.1, because they lead to some important advantages and limitations for the
use of ND.

Bound neutrons in a stable nucleus are stable, but free neutrons undergo 𝛽-decay
with a mean lifetime of approximately 15 minutes. Thus a nuclear reaction of some
sort is required to produce a beam of neutrons for a diffraction experiment. In prac-
tice the number of neutrons produced by a radioactive source is insufficient for a
useful diffraction experiment, and the only two methods currently capable of pro-
ducing enough neutrons are either nuclear fission in a nuclear reactor, or the inter-
action of an accelerated particle beam with a target. Accelerators and reactors are
large, expensive facilities, and hence their availability is limited; the total number of
neutron sources in the world is probably less than 30. The use of a diffractometer
at most neutron sources may be requested by submission of an experimental pro-
posal, and further information about the application procedure should be sought on the
internet.

TABLE 5.1. Properties of the neutron.

Mass mn = 1.00866491600 amu
Mean free lifetime 881.5 s
Charge zero
Spin 1∕2

Magnetic dipole moment 𝜇n = −1.91304272 𝜇N
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5.2.2 The Interactions between a Neutron and a Sample

As implied by its name, the neutron is neutral. The lack of a charge means that a neutron
does not interact with the electric field in a sample, and this is part of the reason why
the interaction between a neutron and a sample is relatively weak. The main interaction
between a neutron and a sample is the nuclear force between the neutron and the nuclei
of the sample, and this interaction occurs for all samples. The neutron has spin 1

2
and

a non-zero magnetic dipole moment, and consequently there is a magnetic interaction
between a neutron and the unpaired electrons in the atoms in a sample. Therefore, for
samples containing magnetic ions, there is a magnetic interaction between a neutron
and the sample, in addition to the nuclear interaction. A detailed consideration of
magnetic diffraction is beyond the scope of this chapter, but Section 5.4.7.1 indicates
how paramagnetic self scattering can be taken into account.

The interaction between a neutron beam and a sample (via nuclear forces and the
magnetic interaction) is relatively weak, compared to the interaction between an X-ray
beam and a sample (via the electromagnetic interaction), and hence ND is an intensity-
limited technique. Thus it is always important to ensure that an ND experiment yields
results with sufficiently good statistical accuracy; this is achieved by using relatively
large samples (the volume of a typical ND sample is of order 1 to 2 cm3), and the longest
possible counting time. Nevertheless, the relatively weak interaction for neutrons is
highly advantageous because the experimental corrections (for absorption, multiple
scattering, etc.) can often be performed much more reliably for ND, leading to more
accurate results.

It is useful to consider the simple case of a neutron beam with wavevector k, parallel
to the z-axis (see Figure 5.1), which is incident on a single fixed nucleus. In this case the
incident wavefunction can be represented as

𝜓inc = exp(ikz). (5.1)

If the neutron wavelength is of the order 1 Å, then this is larger than the size of a nucleus
by a factor ca. 105. Therefore the waves scattered by different parts of the nucleus will
all be in phase, with the result that the total scattered wave is spherically symmetric. In
this case the scattered wavefunction at the point r is

𝜓sc = −b
r
exp(ikr) (5.2)

where b is a constant, known as the scattering length of the nucleus. The scattering length
determines the amplitude of the wave scattered by the nucleus, and it is defined so that
a positive value corresponds to a phase change of 𝜋 between the incident and scattered
waves. It is very important to note that the scattered wave is spherically symmetric, so
that b is not a function of scattering angle; instead b is a simple constant. Thus, nuclear
neutron scattering does not involve a form factor (unlike X-ray diffraction, or magnetic
ND), with the result that reliable information can be measured up to high momentum
transfer, leading to high resolution in real space and accurate bond lengths.
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Figure 5.1. The geometry for a neutron diffraction experiment.

The neutron mass is similar to the mass of a proton (mn/mp ≈ 1.0014), and thus
inelastic scattering processes (where the neutron exchanges energy with the sample) are
of great importance, especially for samples containing hydrogen (i.e., protons which are
not bound in a larger nucleus). A neutron with energy E has a de Broglie wavelength, 𝜆,
given by the non-relativistic expression

E = h2

2mn𝜆
2

(5.3)

(or E = 81.787∕𝜆2 in convenient units of meV and Å, respectively), and thus the neutron
exhibits wavelike behavior including diffraction. Diffraction effects are most clearly
observed if the wavelength is similar to the distances between the scattering centers. For
example, the silicon–oxygen bond length in SiO2 glass is 1.61 Å, and a neutron with
this wavelength has an energy ca. 31 meV. Thus neutrons with a wavelength suitable
for a diffraction experiment also have an energy which is similar in magnitude to the
vibrational energies in solids (e.g., the largest vibrational energy in SiO2 glass is ca.
170 meV). Consequently, inelastic scattering phenomena are of great importance, and
inelastic neutron scattering experiments can provide an important fundamental probe of
the structure of glasses.

5.2.3 Neutron Sources

5.2.3.1 Reactor Sources Neutron beams for ND first became available in the
1940s, with the advent of nuclear reactors in which neutrons are produced by the fission
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of 235U nuclei. The cross-section for neutron-induced fission of 235U is high only for
slow neutrons with energies in the meV range, whereas the fast neutrons produced by
fission have much higher energies in the MeV range. Hence, in order to sustain the
fission process, a reactor includes a component, known as a moderator, which slows
down the neutrons. The neutrons undergo inelastic collisions (see Section 5.2.2) with
the nuclei in the moderator, so that they are in thermal equilibrium at the temperature
of the moderator. The moderator normally contains large numbers of low mass nuclei
(usually H or D), because the energy transferred in the inelastic collisions is maximized
when the mass of the colliding nucleus is as close as possible to the neutron mass. The
peak flux within the moderator is at a neutron speed vp given by

E = 1
2

mnv2
p = kBT , (5.4)

where T is the temperature of the moderator. For example, a temperature of 290 K
corresponds to a neutron energy E of 25 meV, a neutron wavelength 𝜆 of 1.8 Å, or a
neutron speed v of 2200 m/s. It is thus fortuitous that the process of moderation produces
neutrons which, as well as being slowed down for maintaining the fission reaction, also
have a wavelength suitable for performing ND experiments.

A neutron diffractometer uses a beam of neutrons that is obtained by viewing a
moderator through a beam-tube or neutron guide which passes through the shielding
around the neutron source. Note that in practice the moderator used as a source of
neutrons for ND experiments at a reactor may be separate from the moderator used to
slow the neutrons in order to maintain the fission reaction. Figure 5.2 shows the neutron
flux for three different moderators at the world’s pre-eminent reactor source of neutrons,
the Institut Laue-Langevin (ILL) in Grenoble, France. Reactor neutron sources produce
a high flux of thermal neutrons (E∼25 meV, T∼290 K) and cold neutrons (E∼1 meV,
T∼12 K), but they have little flux at higher epithermal energies (E∼1 eV, T∼12000
K). This is a consequence of the fact that a reactor can only produce neutrons which
are in thermal equilibrium with a moderator, and there are practical limitations on the
maximum temperature of the moderator.

The neutron flux produced by a normal nuclear reactor is unchanging with time and
covers a wide range of neutron wavelengths. In order to perform an ND experiment it
is thus necessary to monochromate the neutron beam from a reactor so that it covers a
narrow range of neutron wavelengths, and the vast majority of the flux from the source
is lost at this stage.

5.2.3.2 Accelerator Sources Since the 1960s, ND experiments have increas-
ingly come to be performed using sources of neutrons that are based on a particle
accelerator. A beam of charged particles is accelerated to a high energy and then fired
at a target. Interactions between the particle beam and the nuclei in the target produce
high energy neutrons that are then slowed down by a moderator.

The earlier accelerator-based neutron sources used an electron linear accelerator to
accelerate an electron beam to relativistic energies (∼50 MeV), which was then fired at
a dense target made of a heavy element, usually uranium, and neutrons were produced
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Figure 5.2. The neutron flux distribution for three different moderators at the ILL reactor

(left-hand scale) and for the liquid methane moderator at the ISIS accelerator (right-hand

scale).

by a two-stage process. Firstly, the electrons were slowed down extremely rapidly due
to the strong interaction with the electromagnetic field of the target nuclei, producing
a cascade of bremsstrahlung photons. Secondly, some of these photons went on to
produce neutrons by photo-neutron reactions, where the photon excites a target nucleus
that subsequently decays with the emission of a neutron. Approximately 20 electrons
must be accelerated for each neutron produced.

More recent accelerator-based neutron sources use a linear accelerator, sometimes
in combination with a synchrotron, to accelerate a beam of protons to a high energy
(∼800 MeV). The proton beam is fired at a heavy metal target (made for example of
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tantalum, tungsten, uranium, or mercury), and neutrons are produced by the spallation
process. Spallation is a violent interaction between the proton and the target nucleus that
results primarily in the emission of neutrons, but also a variety of light nuclear fragments.
In effect, the protons chip pieces off the target nuclei, and each proton produces about
15 neutrons for a non-fissile target (or about 25 neutrons for a fissile target).

Accelerator-based sources are usually pulsed1 (typically with a pulse repetition
rate of order 50 Hz), and so they produce a pulsed neutron flux that is ideally suited to
the time-of-flight ND technique. This technique involves measuring the time-of-flight
(T-O-F), t, for a neutron to travel the total flight path, L, from the moderator to the
detector, via the sample. On the assumption of elastic scattering (i.e., initial and final
neutron energies are the same, Ei = Ef ) then

t =
mn

h
L𝜆, (5.5)

(or t = 252.82L𝜆 in convenient units of μs, meters, and Ångstroms, respectively), and it
is straightforward to determine the neutron wavelength. The use of the T-O-F technique
removes the need to monochromate the neutron beam and thus, even though the raw flux
produced initially by an accelerator-based source is much less than that produced by a
reactor source, the final flux available for ND is of a comparable order of magnitude
(see Figure 5.2).

The moderator at an accelerator-based neutron source is used to slow the neutrons
down so that they have suitable wavelengths for ND, in the same way as for a reactor
neutron source. However, in order that the moderation process does not broaden the
pulsed time structure of the neutron flux too much, the moderator must be relatively
small. (Also note that, unlike a reactor, the process of moderation plays no role in the
production of neutrons at an accelerator-based source.) This has the consequence that
the neutrons produced by an accelerator-based source are under-moderated and there
are many more epithermal neutrons (i.e., neutrons with energy greater than thermal
neutrons, see Figure 5.2) than for a reactor source. Figure 5.2 also shows the neutron
flux for a moderator at the ISIS spallation neutron source at the Rutherford Appleton
Laboratory, UK. The epithermal neutrons at a pulsed neutron source allow diffraction
patterns to be measured up to high momentum transfers, and it is this which enables
high resolution in real space to be achieved (see Section 5.4.2.2).

5.2.4 Neutron Diffractometers

5.2.4.1 Neutron Diffractometers—General Principles The purpose of a
total neutron diffractometer is to measure the differential cross-section

IN (Q) =
( d𝜎

dΩ

)
tot

=
Rtot

NΦdΩ
, (5.6)

1 Accelerator-based neutron sources which are quasi-steady-state or intensity-modulated also exist. Further-
more pulsed neutrons have also been produced in Russia by using a pulsed reactor.
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where Rtot is the rate at which neutrons of wavelength 𝜆 are scattered into the solid
angle dΩ in the direction (2𝜃,ø) (see Figure 5.1), irrespective of whether or not they
are scattered elastically (i.e., total neutron scattering). N is the number of atoms in the
sample and Φ is the flux of neutrons of wavelength 𝜆 that is incident on the sample.

In general the differential cross-section depends upon the scattering vector

Q = ki − kf , (5.7)

where ki and kf are the neutron wavevector before and after scattering. The term momen-
tum transfer (i.e., the momentum transferred to the sample) is commonly used for Q,
although strictly speaking this term should be used for ℏQ. Diffraction data are treated
by considering the scattering to be totally elastic so that the magnitudes of the initial
and final neutron wavevectors are the same,

|ki| = |kf |. (5.8)

Most glass samples are isotropic (i.e., their properties are the same in all directions),
and for an isotropic sample it is only the magnitude of the momentum transfer that is
significant, in which case the differential cross-section is a function of a single variable

Q = |Q| = 4𝜋 sin 𝜃
𝜆

. (5.9)

For ND experiments on polycrystalline powders it is usually more convenient to treat
the differential cross-section as a function of d-spacing, d (= 2𝜋/Q), defined according
to Bragg’s law by

2d sin 𝜃 = 𝜆. (5.10)

Bragg peaks are then observed in the differential cross-section whenever the d-spacing
satisfies

d = dhk𝓁 , (5.11)

where dhk𝓁 is a d-spacing between atomic planes (with Miller indices (hk𝓁)) in the
crystal for which the structure factor is non-zero.

To produce high quality data, a neutron diffractometer must satisfy several require-
ments: (i) The data must have a good statistical accuracy, which is obtained by having
a high count rate. This is achieved by such factors as an intense source, a large total
detector solid angle, and a sufficiently large sample. (ii) The corrections that are made
to the data must be as small as achievable. In particular the background must be small,
featureless and unchanging. (iii) The range in Q must be as wide as possible, in order
to provide high resolution in real space. (iv) The reciprocal-space resolution must be as
narrow as possible.
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Figure 5.3. Schematic of a neutron diffractometer for a continuous source.

Due to its lack of charge, a neutron cannot be detected by directly producing an
electrical current in a detector. Instead a more indirect method of detection is used,
involving a nuclear reaction that releases energy, which is then turned into an electrical
signal, such as the absorption of a neutron by a 3He nucleus

3
2He + 1

0n → 3
1H + 1

1p + 0.770 MeV. (5.12)

Neutrons are usually detected using single particle counting.

5.2.4.2 Reactor Source Diffractometers A schematic of the layout of a typ-
ical neutron diffractometer at a continuous (reactor) source is illustrated in Figure 5.3.
The neutron beam coming from the moderator at a conventional reactor covers a wide
range of wavelengths and is unchanging with time. Therefore a single crystal monochro-
mator is used to produce a monochromatic beam. The general principle of operation
of a neutron diffractometer at a steady state source is the same as for a conventional
laboratory X-ray diffractometer, since both have a well-defined incident wavelength.
The differential cross-section is measured as a function of Q by moving the detector to
different scattering angles, 2𝜃, and measuring the scattered count rate. That is to say, Q
(or d) is scanned by varying 2𝜃 whilst keeping the neutron wavelength 𝜆 constant (c.f.
Eq. 5.9).

Figure 5.4 shows the D4c diffractometer [1] at the ILL reactor which, for many
years, has been the most successful reactor-based diffractometer for studying the struc-
ture of liquids and amorphous materials. The diffractometer uses neutrons from a hot
graphite moderator at a temperature of 2400 K, because this produces neutrons with short
wavelengths and hence a high maximum Q can be achieved, leading to good real-space
resolution. A copper monochromator is used to produce neutrons with a wavelength of
0.7 Å, 0.5 Å or 0.35 Å, depending on which copper reflection is selected. Most of the
neutron flight path is evacuated in order to minimize background due to the scattering
of neutrons by air. There are nine one-dimensional position sensitive detectors, each of
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Figure 5.4. The D4c liquids and amorphous diffractometer at the Institut Laue Langevin [1].

which is a micro-strip detector with 64 elements. The large number of detectors is used
to provide a large detector solid angle and hence a high count rate. The detectors can
cover a range in scattering angle, 2𝜃, from 1.5◦ to 140◦, and with a wavelength of 0.5Å
the Q-range of D4c extends from 0.3 to 24 Å−1. (A higher maximum Q may be attained
with a wavelength of 0.35 Å, but the flux available at this wavelength is an order of
magnitude lower and is too low for regular use.)

5.2.4.3 Pulsed Source Diffractometers A schematic of the layout of a typical
T-O-F neutron diffractometer at a pulsed source is illustrated in Figure 5.5. The T-O-F

Figure 5.5. Schematic of a time-of-flight neutron diffractometer for a pulsed source.
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Figure 5.6. The GEneral Materials diffractometer, GEM, at the ISIS Facility [2]. See plate sec-

tion for a color version of this figure.

technique (see Eq. 5.5) is used to determine the wavelength of the detected neutrons
and hence a monochromator is not needed. The differential cross-section is measured
as a function of Q with the detector at a fixed scattering angle, 2𝜃, and Q (or d) is
scanned by varying the neutron wavelength 𝜆 (c.f. Eq. 5.9). The T-O-F technique is
thus a dispersive technique and a white beam covering a wide range of wavelengths is
incident on the sample. For diffraction from a crystalline powder, pulsed source data
have the simplifying property that T-O-F is proportional to d-spacing;

t =
2mn

h
Ld sin 𝜃, (5.13)

(or t = 505.64Ldsin𝜃 in convenient units of μs, meters, and Ångstroms, respectively).
A noteworthy advantage of the ability to measure a full diffraction pattern at a single
fixed scattering angle is that complex sample environment equipment can be used (e.g.,
for high pressures) with two well-collimated flight paths for the incident and scattered
beams so that background from the equipment is minimized.

Figure 5.6 shows the GEneral Materials diffractometer, GEM [2], at the ISIS spal-
lation neutron source, which is arguably the best neutron diffractometer in the world
for high real-space resolution studies of glass structure. The neutron beam comes from
a liquid methane moderator at a temperature of 110 K. A cooled moderator is used in



JWBS168-c05 JWBS168-Affatigato Printer: Yet to Come September 1, 2015 19:32 Trim: 6.125in X 9.25in

THEORETICAL ASPECTS OF NEUTRON DIFFRACTION ON GLASSES 169

order to reduce the correction for inelasticity effects. The length of the incident flight
path, Li, is 17.0 m, leading to a high resolution in reciprocal space. In practice a T-O-F
diffractometer has several different detector banks at different scattering angles, 2𝜃, in
order to extend the Q-range of the data, and GEM has detector banks at eight different
scattering angles. The detectors are ZnS scintillators with narrow 5 mm active elements
so as to minimize the angular contribution to the reciprocal-space resolution, and the best
resolution (ΔQ/Q∼0.35%) is obtained from the backward angle detectors. The detectors
cover a very large solid angle (area∼10 m2, maximum azimuthal angle∼45◦) so as to
achieve a high effective count rate. A nimonic t0 chopper at a distance 9.3 m from the
moderator is used to close off the beam at t = 0, and thus prevent very fast neutrons
and prompt gamma rays from reaching the sample. This prevents high energy neutrons
from thermalizing in large pieces of sample environment equipment (e.g., high pressure
equipment) and then giving rise to a substantial background. In addition two disc chop-
pers are used at flight paths of 6.5 m and 9.5 m to define a restricted wavelength range for
the beam reaching the sample. This is done so as to avoid frame overlap, which can be a
significant problem for a diffractometer with a longer flight path. Frame overlap occurs
when slower neutrons from a pulse of the source are overtaken by faster neutrons from
the subsequent pulse. If the flux of the slower neutrons is significant, then a diffraction
peak which in reality is detected at the long T-O-F t, appears to be detected at the earlier
time t-𝜏0 (where 𝜏0 is the period of the source), and this leads to spurious peaks in
the data. The sample tank contains an oscillating radial collimator, made of 10B-coated
mylar vanes, which collimates the secondary flight path from sample to detector, thus
reducing background, especially from bulk sample environment such as high pressure
equipment. However, for most simple glass structure studies, the oscillating collimator is
removed because it imposes a rapidly changing profile on the scattered neutrons, which
may be problematic for the experimental corrections.

5.3 THEORETICAL ASPECTS OF NEUTRON DIFFRACTION ON
GLASSES

5.3.1 The Static Approximation

The outline of ND in this chapter is given within the static approximation, in which
the atoms in a sample are fixed, so that their positions do not change and they do not
exchange energy with a neutron beam. For a more rigorous theoretical derivation of
results, including the effects of inelastic scattering, the reader should consult other more
fundamental texts [3–7].

5.3.2 Scattering from a Single Nucleus

For the single fixed nucleus considered above in Section 5.2.2, the cross-section can
be evaluated using Eq. 5.6. The incident neutron flux is Φ = |𝜓inc|2 = 1 (see Eq. 5.1),
whilst the rate at which neutrons are scattered into the area dS is Rtot = |𝜓sc|2dS = b2dΩ
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Figure 5.7. The scattering geometry for a single atom, j, at a position Rj relative to an

arbitrary origin O. For the wave scattered from the atom, there is a path length difference

Δi − Δf = Rj .(k̂i − k̂f ) relative to the origin.

(see Figure 5.1 and Eq. 5.2). The differential cross-section for the single fixed nucleus
is then

IN (Q) =
( d𝜎

dΩ

)
tot

= b2. (5.14)

Integrating this expression over all possible directions for the scattered neutron gives the
total cross-section for the nucleus as 𝜎 = 4𝜋b2, and the transmission of a thickness x of
identical non-interacting atoms with number density 𝜌0 is given by the Beer–Lambert
law,

T = I (x)
I0

= exp(−𝜌0x𝜎). (5.15)

Usually scattering lengths are given in units of fm (i.e., 10−15 m), but cross-sections
are given in units of barns (10−28 m). This can lead to an error by a factor of 100
if sufficient care is not taken when using tabulated scattering lengths to calculate a
cross-section.

5.3.3 Scattering from an Assembly of Nuclei

Figure 5.7 shows the scattering geometry for a single atom, j, at position Rj relative to an
arbitrary origin O. For the wave scattered from the atom, there is a path length difference
(Δi − Δf ) relative to the origin. This is equivalent to a phase difference (Q.Rj) (using
Eq. 5.7). For an assembly of N nuclei, the scattered wavefunction involves a sum over
the phase factors for all the nuclei,

𝜓sc =
N∑

j=1

−
bj

r
exp(iQ.Rj). (5.16)
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The differential cross-section is then given by

IN(Q) = r2

N
||𝜓sc

||2 = 1
N

N∑
j=1

N∑
k=1

bjbk exp(iQ.(Rj − Rk)). (5.17)

Thus the scattered intensity depends on a sum over all the interatomic vectors, (Rj − Rk),
in the sample.

5.3.4 Isotropic Samples

Glasses and crystalline samples are usually isotropic, in which case the scattered intensity
depends on the magnitude of the momentum transfer, Q = |Q|, but not on the direction
of Q. In this case, averaging Eq. 5.17 over all directions of Q leads to the Debye equation,

IN (Q) = 1
N

N∑
j=1

N∑
k=1

bjbk

sin(QRjk)

QRjk
, (5.18)

where Rjk is the magnitude of the interatomic vector, (Rj − Rk), that is, Rjk is the distance
between atoms j and k.

5.3.5 Coherent and Incoherent (Distinct and Self) Scattering

A significant difference between ND and XRD (X-ray diffraction) concerns the inco-
herent scattering from the sample. For XRD, the scattering power (i.e., the form factor)
of all atoms of the same element may be regarded as identical. However, for ND, the
scattering length bj (i.e., the amplitude of the neutron wave scattered by a nucleus) is not
the same for all nuclei of a particular element due to two factors, isotopic incoherence
and spin incoherence. Isotopic incoherence arises as a result of the presence of more than
one isotope of a particular element. Spin incoherence is due to the fact that a neutron and
a nucleus of spin I can form two different compound nuclei of spin I±1/2; the amplitude
of the neutron wave scattered by the nucleus, and thus the scattering length, is generally
different for the two different compound nuclei.

For a consideration of coherent and incoherent scattering it is convenient to write
Eq. 5.18 in the form

IN (Q) =
N∑

j=1

N∑
k=1

bjbk ⟨j, k⟩, (5.19)

The value of bj is not the same for all the nuclei of a single element, due to isotopic
and spin incoherence, and hence to obtain a useful result Eq. 5.19 is averaged over all
possible distributions of scattering length for atoms of the same element, making the
assumption that there is no correlation between the values of bj for any two nuclei. Now
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the average value of bjbk differs, depending whether or not j = k is satisfied.

bjbk = (b̄)2, if j ≠ k

(5.20)

bjbk = b2, if j = k

where b̄ is the average scattering length (also called the coherent scattering length) for

all nuclei of a particular element, whilst b2 is the average of the squared scattering length
for the relevant element. (In Eq. 5.20, it is assumed that j and k can refer to two nuclei
of the same element.) The double summation of Eq. 5.19 may thus be separated into j ≠
k (distinct) terms and j = k (self) terms;

IN (Q) = iN (Q) + IS (Q) , (5.21)

where the self scattering is given by

IS (Q) =
∑

l

clb
2
l =

⟨
b2

⟩
av

, (5.22)

in which cl = Nl∕N is the atomic fraction for element l, and ⟨b2⟩av is the average squared
scattering length for the sample (i.e., a weighted average over all the elements in the

sample). The average scattering cross-section per atom is thus 𝜎scatt = 4𝜋⟨b2⟩av. The
distinct scattering is given by

iN (Q) =
∑
l,l′

b̄lb̄l′

Nl∑
j=1
j≠k

Nl′∑
k=1

1
N

sin(QRjk)

QRjk
, (5.23)

where the l and l′ summations are over the elements in the sample (e.g., for PbO-SiO2,
l = Pb, Si, O). The j (or k) summations are then over all the Nl (or Nl′) atoms of element
l (or l′), excluding terms where j and k refer to the same atom.

In Eq. 5.21 the differential cross-section, IN(Q), is separated into two parts, the
distinct and self scattering; the distinct scattering is an interference term which contains
structural information about the interatomic distances in the sample, whilst the self
scattering is essentially a background which does not contain structural information.
In order to extract structural information about the sample it is necessary to perform a
satisfactory subtraction of the self scattering from the measured diffraction data.

The separation into distinct and self terms arises naturally in diffraction theory, and
is useful for the study of glass structure, and hence this is the formalism that is used in
this chapter. However, there is an alternative formalism, in terms of coherent and inco-
herent scattering, which is also widely used. By the algebraic trick of adding and
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subtracting a
∑

j b̄2
j ⟨j, j⟩ term to Eq. 5.19, the differential cross-section may be separated

into its coherent and incoherent parts.

IN (Q) =
∑
l,l′

b̄lb̄l′

Nl∑
j=1

Nl′∑
k=1

1
N

sin(QRjk)

QRjk
+

(⟨
b2

⟩
av
−

⟨
b̄2⟩

av

)
, (5.24)

in which self terms (j = k) are now included in the summation. The incoherent cross-
section of the sample is

𝜎inc = 4𝜋
(⟨

b2
⟩

av
−

⟨
b̄2⟩

av

)
, (5.25)

in which ⟨b̄2⟩av =
∑

l clb̄l
2
, and 𝜎coh = 4𝜋⟨b̄2⟩av is the average coherent scattering cross-

section for the sample. The interpretation of the coherent contribution to the differential
cross-section is that this is what would be measured from a sample for which all nuclei
of element l had a scattering length of b̄l. The coherent contribution to the differential
cross-section contains the interference information relating to the positions of atoms
in the sample. For most elements the incoherent cross-section is relatively small, but a
notable exception to this is hydrogen for which the incoherent cross-section is very large,
so that the measured experimental diffraction pattern is dominated by the incoherent
contribution, and this can be a severe problem as is discussed in Section 5.4.6.2.

Figure 5.8 illustrates how the differential cross-section, IN(Q), can be separated
into either distinct and self contributions, or coherent and incoherent contributions.
Experimental data for liquid CCl4 are used for this illustration because this compound
has a larger incoherent cross-section than most materials, due to the fact that chlorine has
two isotopes with very different scattering lengths, and both isotopes have a significant
abundance. The average level of IN(Q) is given by the self scattering, and the distinct
scattering, iN(Q), oscillates about this average level; this is an important underlying
principle for the treatment of experimental data.

As shown by Eq. 5.23, the distinct scattering contains information about the structure
of the sample, in the form of the interatomic distances, weighted according to the coherent
neutron scattering lengths of the atoms. The magnitude of the coherent scattering length
of an element is determined by the strong interaction between the nucleus and the neutron,
and hence it varies haphazardly across the periodic table, as shown in Figure 5.9. This
behavior leads to certain advantages for ND, compared to XRD. For example, XRD is
not good at distinguishing elements which are adjacent in the periodic table, because
their X-ray scattering powers (i.e., their atomic numbers) are almost the same. Also, ND
is much better than XRD for determining the position of oxygen atoms, since oxygen
scatters weakly for XRD, but relatively strongly for ND.

5.3.6 Atomic Vibrations

5.3.6.1 The Effect of Inelasticity on the Self Scattering An important
stage in the analysis of ND data is to obtain the distinct scattering, iN(Q), by subtracting
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Figure 5.8. The lower Q region of the corrected differential cross-section, IN(Q), for liquid

CCl4, showing how it can be separated into either self and distinct contributions, or into coher-

ent and incoherent contributions.

the self scattering from the measured differential cross-section (see Figure 5.10). It
appears from Eq. 5.21 that this should be simple, since in the static approximation the

self scattering is a constant, IS(Q) =
∑

l clb
2
l , independent of Q. However, this is not

the case; in practice the effect of inelastic scattering of neutrons on IS(Q) must be taken
into account.

In the static approximation it is assumed that neutrons do not exchange energy with
the sample, but actually a scattered neutron may have a non-zero energy transfer

E = Ei − Ef , (5.26)

where Ei and Ef are the neutron energy before and after scattering. A non-zero value
of E corresponds to inelastic scattering. The effect of inelastic scattering for diffraction
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Figure 5.9. The bound atom coherent neutron scattering length of the natural elements (and

deuterium) as a function of atomic number [32]. Elements with a negative scattering length

(and deuterium) are indicated by the element symbol.

was first considered by Placzek [8] (who showed that, fortunately, to first order, there
is no inelasticity effect for the distinct scattering, i N(Q)), and it is still widely known
as “the Placzek correction”. The effect can be calculated within an approximation (first
derived for a reactor diffractometer by Johnson et al. [5] and for a T-O-F diffractometer
by Wright [9] and later by Howe et al. [10]), and a full treatment of this topic is beyond
the scope of this chapter; the reader should consult more advanced texts for full details
[11]. However, the salient points can be understood from the following equation;

IS(Q) =
∑

l

clb
2
l (1 − Pl(Q, 2𝜃, Ml, T , 𝜀(Ef ),Φ(Ei))). (5.27)

The Placzek correction, Pl, depends on the scattering angle, 2𝜃, so that the self scattering
becomes smaller at higher angles. The correction depends on the sample temperature, T,
so that the effect is more severe for a hotter sample. The correction also depends on the
masses of the atoms in the sample, so that the effect is more severe for lighter elements.
Furthermore, the correction depends on the energy efficiency, 𝜀(E), of the detector,
on the energy distribution of the source, Φ(E), and on the Q-E locus for neutrons
detected with the same apparent momentum transfer. These last three factors all depend
on the parameters of the diffractometer, and in particular the inelasticity effect has
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Figure 5.10. Key stages in the analysis of (corrected and normalized) neutron diffrac-

tion data from a glass: subtraction of self scattering, Fourier transformation, addition

of T0(r).

marked differences between reactor and T-O-F diffractometers. Figures 5.11 and 5.12
show the corrected differential cross-section, IN(Q), for B2O3 glass, as measured on
the D4 [12] and GEM [13] diffractometers, respectively, together with the calculated
self scattering, IS(Q). For a reactor diffractometer (Figure 5.11), the main effect is that
the self scattering becomes smaller at higher angle (i.e., at higher Q). For a T-O-F
diffractometer (Figure 5.12), the self scattering also becomes smaller at higher angle
(i.e., the self scattering is smaller for detector banks at higher angle). However, for a T-O-
F diffractometer the Q-dependence of the self scattering is different, with a very strong
increase at the lowest Q, followed by a minimum at intermediate values of Q, arising
from the energy distribution of the neutrons from the source, which is characteristic of the
temperature of the moderator. For the analysis of T-O-F diffraction data, it is important to
note that, because the Placzek correction (see Eq. 5.27) depends on scattering angle, 2𝜃,
this correction must be made before data from different scattering angles are combined
to form the final determination of the distinct scattering, iN(Q).

5.3.6.2 The Effect of Atomic Vibrations on Diffraction The Debye equa-
tion in the form given above (Eq. 5.23) does not explicitly include the effect of atomic
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Figure 5.11. The differential cross-section of B2O3 glass, IN(Q) (corrected and normalized),

measured on the D4 diffractometer, together with the calculated self scattering [12].

motions, but these may be included as follows:

iN (Q) =
∑
l,l′

iNll′ (Q) =
∑
l,l′

clcl′ b̄lb̄l′ (Sll′(Q) − 1), (5.28)

iNll′(Q) = b̄lb̄l′
1
N

Nl∑
j=1
j≠k

Nl′∑
k=1

exp(−2Wjk)
sinQ⟨Rjk⟩

Q⟨Rjk⟩ , (5.29)

2Wjk =
Q2

⟨
u2

jk

⟩
2

. (5.30)

where ⟨Rjk⟩ is the mean distance between the pair of atoms j and k, and ⟨u2
jk⟩ is the

mean square variation in the distance between these two atoms. Thus the effect of
atomic vibrations is to introduce the Debye–Waller factor, exp(−2Wjk), which leads to a
reduction (i.e., a damping) of the distinct scattering at higher Q. In Eq. 5.28, the distinct
scattering is separated into partial structure factors, Sll′(Q), for each pair of elements, l
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Figure 5.12. (a) The calculated self scattering, IS(Q), for B2O3 glass on the GEM diffractome-

ter. (b) The (corrected and normalized) differential cross-section of B2O3 glass, IN(Q), mea-

sured on the GEM diffractometer (continuous line), together with the calculated self scattering

(dashed line) [13]. The curves for the different detector banks are shown with vertical offsets

for clarity.
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Figure 5.13. The distinct scattering, iN(Q), for SiO2 glass (dashed line), together with a Debye

equation simulation for an ideal SiO4 tetrahedron with realistic thermal displacement factors

(continuous line). The Si–O and O–O contributions to the simulation are shown (together with

the experimental result shown again as a dashed line) with vertical offsets. The inset shows

the corresponding correlation function, TN(r), for the simulation, and a SiO4 tetrahedron.

and l′, in the sample; these are often called Faber–Ziman partial structure factors [14].
Some workers also find it useful to define a total coherent structure factor, SN(Q), for
example by

iN(Q) = (SN(Q) − 1)
⟨

b̄2⟩
av . (5.31)

Figure 5.13 shows a simple application of Eqs. 5.28 to 30 to simulate the distinct
scattering for SiO2 glass, by calculating the distinct scattering for an ideal SiO4 tetra-
hedron (using physically realistic thermal displacement factors ⟨u2

SiO⟩1∕2 = 0.041 Å and⟨u2
OO⟩1∕2 ) = 0.081 Å). For this tetrahedron, there are only two interatomic distances, the

bond length rSiO = 1.614 Å, and the oxygen–oxygen distance, rOO =
√

8∕3rSiO = 2.636
Å. There are thus two simple contributions to the simulation, iNSiO(Q) and iNOO(Q), both
of which are damped sinc functions, as shown in the lower parts of Figure 5.13. The
Si–O distance has a smaller variation, so that it damps less severely to high Q, and hence
it is possible to estimate the length of the Si–O bond from the period (ΔQ) of oscillation
of iN(Q) at high Q, according to rSiO ≈ 2𝜋/ΔQ.

The simulated function in Figure 5.13 gives a reasonably close description of the
observed features in the distinct scattering, iN(Q). Thus the general shape of the distinct
scattering for a glass is determined by the basic structural unit. For pairs of atoms
which are further apart than those in the basic structural unit, the RMS (root mean
square) variation in distance, ⟨u2

jk⟩1∕2 , is relatively large and hence their contribution
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is concentrated mainly at lower Q; this is why the simulation in Figure 5.13 is less
satisfactory at lower Q.

The Debye equation method of simulating diffraction data can be very powerful, for
example for predicting the scattering from extremely small particles (i.e., nanoparticles).
However, it rapidly becomes hard to perform the calculation as the model gets bigger,
because the number of interatomic distances involved is proportional to N2.

The Debye–Waller factor defined according to Eq. 5.30 is not exactly the same as
used in crystallography. In crystallographic analysis (which is essentially a description
of the long range order) the Debye–Waller factor for a pair of atomic sites, d and d′,
is exp(−(Wd + Wd′ )), where Wd = Q2⟨u2

d⟩∕2 and ⟨u2
d⟩ is the mean square displacement

of the atom from the site. Thus the crystallographic Debye–Waller factor treats the two
sites as independent oscillators, and it is not related to the interatomic distance between
two atoms. If two atoms are close together, especially if they are bonded, their thermal
motions are highly correlated, with the result that the value of ⟨u2

jk⟩1∕2 is smaller for
short distances ⟨Rjk⟩ than would be predicted by the crystallographic Debye–Waller
factor [15].

Although the Debye equation is able to give a reasonable description of the diffrac-
tion pattern (i.e., the distinct scattering), each atomic pair provides a contribution which
extends over the full Q-range, and hence the Debye equation does not provide a useful
means of separating the contributions arising from different pairs of atoms in the struc-
ture. In order to obtain specific information about the different interatomic distances in
the glass, it is necessary to adopt a Fourier transform approach, so that a correlation
function in real space can be studied.

5.3.7 Real-space Correlation Functions

So far, the diffraction from a glass has been considered in terms of the scattering in
reciprocal space, but it is immensely powerful to consider how this may be related to
information in real space by means of Fourier transformation.

The simplest correlation function to understand is the radial distribution function
(RDF) of a monatomic system, n(r). This may be defined so that n(r)dr is the number of
atoms inside a spherical shell with radii r and r+dr, with an average atom at the center.
Figure 5.14 gives a graphical representation of how such functions are related to the
atomic structure. The total correlation function, t(r), and pair correlation function, g(r),
of the monatomic system may then be defined according to

n (r) = rt (r) , (5.32)

t (r) = 4𝜋rg (r) . (5.33)

Very few samples of interest are monatomic; it is important to consider samples
containing more than one element, in which case the different scattering lengths of the
elements must be taken into account, and this is done by means of partial correlation
functions. The partial RDF, nll′ (r), is defined so that nll′ (r)dr is the number of atoms of
type l′ in a spherical shell (r,r+dr) with an average atom of type l at the center, and there



JWBS168-c05 JWBS168-Affatigato Printer: Yet to Come September 1, 2015 19:32 Trim: 6.125in X 9.25in

THEORETICAL ASPECTS OF NEUTRON DIFFRACTION ON GLASSES 181

Figure 5.14. The neutron correlation function, TN(r), for B2O3 glass [13], together with a

fragment of a two-dimensional B2O3-like network, showing how the peaks in the correlation

function arise from the interatomic distances.

are corresponding partial functions, tll′(r) and gll′ (r), which are defined in the same way
as in Eqs.5.32 and 5.33.

The total correlation function measured in an ND experiment, TN(r), is obtained by
Fourier transformation of the distinct scattering,

TN (r) = T0 (r) + DN (r) = T0 (r) + 2
𝜋

∞

∫
0

QiN (Q) M (Q) sin (rQ) dQ , (5.34)

where DN(r) is the differential correlation function, M(Q) is a modification function
introduced to take account of the finite Q-range of the experimental data (see Section
5.4.2.2), and the average density contribution is defined by

T0 (r) = 4𝜋rg0 ⟨b̄
⟩2

av , (5.35)

where g0 = N/V is the macroscopic atom number density, and ⟨b̄⟩av =
∑

l clb̄l is the
average coherent neutron scattering length for the sample. DN(r) is the function which is
obtained directly by Fourier transformation of the distinct scattering, and it arises from
deviations of the scattering length density from the average.
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The total neutron correlation function is related to the partial functions according
to

TN (r) =
∑
l,l′

clb̄lb̄l′ tll′ (r). (5.36)

It is of great importance to note that the l−l′ and l′−l partial correlation functions are
not independent, but are related according to

tl′l (r) = tll′ (r)
cl

cl′
. (5.37)

A simple way to understand this point is to consider that the number of Si–O bonds in
a silicate sample is equal to the number of O–Si bonds; hence the ratio of coordination
numbers depends on the relative numbers of the two types of atom,

nOSi = nSiO
cSi

cO
, (5.38)

that is, the coordination numbers nSiO and nOSi are not independent.
Figure 5.15 shows a measurement for GeO2 glass [16] of the various neutron

correlation functions introduced above. The total neutron correlation function, TN(r),
is the most widely favoured of these functions for use in studying glass; for example,
its use has often been advocated by Wright [3]. The RDF was used extensively in the
past, such as in the pioneering XRD work of Warren [17], but is not widely used now.
It has the advantage of suppressing artefacts at low r, but also suppresses the nearest
neighbor peak(s), and arguably these are the most important peaks in the measured
correlation function. The pair correlation function, gN(r), is more commonly favoured
in studies of liquid structure [18]. It does not suppress the nearest neighbor peak(s), but
it does suppress the longer range peaks (which are not so significant in a liquid), and it
amplifies artifacts at low r. The total correlation function, TN(r), is the function which
arises directly from the Fourier transform in Eq. 5.34 without multiplication/division by
a factor r, and it provides a reasonable compromise between suppressing or amplifying
both the low r artifacts and the longer range information.

Figure 5.14 shows graphically how the total correlation function is related to the
atomic structure for a simple oxide glass. Usually the first peak arises from bond lengths
in the basic structural unit (e.g., the B–O bond length in B2O3 glass), and this is followed
by a peak which arises from the oxygen–oxygen distance in the basic structural unit
(e.g., the O–O distance in BO3 units in pure B2O3 glass). The total correlation function
can be measured experimentally for any isotropic sample, and Figure 5.16 shows the
distinct scattering and TN(r) for three samples, liquid, glass and crystal, which all have
a tetrahedral structural unit. It is striking that the first two peaks, arising from the two
distances within the tetrahedron, are similarly well defined in all three phases, that is, the
basic structural units in glasses are neither less well defined than in crystals, nor more well
defined than in liquids. The differences between the three different phases occur mainly
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Figure 5.15. Neutron correlation functions for GeO2 glass [16]: (a) the total correlation

function, TN(r); (b) the differential correlation function, DN(r); (c) the pair correlation func-

tion, gN(r); and (d) the radial distribution function nN(r). In each case the experimental result

is shown as a continuous line, whilst the relevant average density term is shown as a dashed

line.

at longer distance. For the liquid, there is only slight order beyond the structural unit.
For the glass there is more order than the liquid in the medium range, whilst the crystal
has much greater order at longer range. The experimental approach (i.e., correlation
functions) described here was originally developed mostly for the study of glasses and
liquids, but in recent years it has increasingly been applied to the study of crystalline
structures [19], in which case it is often called the PDF method [20] (see Section 5.4.10).
The term PDF is an abbreviation for Pair Distribution Function, and this function is
equivalent to the differential correlation function, DN(r), introduced above in Eq. 5.34.

A difficulty of this field, especially for newcomers, is that there is not a generally
agreed convention for the exact definition of correlation function or scattering function;
different workers may use the same notation for different functions, or different notation
for the same function. A detailed discussion of this issue has been given by Keen [21],
but here are some guidelines that may be of use in determining exactly what correlation
function has been used in a publication:

� What is the long range trend of the correlation function? Is it proportional to r2,
r or a constant (i.e., is the definition nN(r), TN(r) or gN(r))? If the correlation
function is non-zero at high r, then the dependence on r should be apparent at
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Figure 5.16. The distinct scattering, iN(Q) (left-hand side), and the neutron correlation func-

tion, TN(r) (right-hand side), for liquid carbon tetrachloride, GeO2 glass, and GeO2 in its quartz

crystalline form [16]. See plate section for a color version of this figure.

high r (as in Figure 5.15a, c and d). If the correlation function oscillates about
zero (as in Figure 5.15b), then the dependence on r should be apparent from the
low r region.

� Has the average density contribution been subtracted, to yield a correlation func-
tion which oscillates about zero? (e.g., in Figure 5.15b, T0(r) has been subtracted
to yield the differential correlation function, DN(r)).

� In this chapter, a consistent normalization to one atom is used (i.e., the equations
involve a factor 1/N, where N is the total number of atoms in the sample). Another
normalization (often used by Wright [3]) is in terms of a composition unit (for
SiO2 this involves three atoms, and hence the correlation function is three times
larger). An alternative approach is to define the correlation functions so that they
oscillate about one, and this is more popular in the study of liquid structure
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[18]. The pair correlation function, gN(r), consistent with the definitions above,
oscillates about g0⟨b̄⟩2

av, but it oscillates about one if divided by this factor.
For a monatomic sample, this normalization is attractive because then the pair
correlation function indicates how the local density varies with distance from an
average atom. However, for other samples, the situation is not so simple, due to
the weighting of each partial contribution by the scattering lengths of a pair of
atoms, and so this normalization is less attractive.

In a more complete theory of ND, the pair correlation function is shown to be the
distinct van Hove correlation function [22], gll′(r) = GD

ll′
(r, 0), where

GD
ll′(r, t) = 1

Nl

Nl∑
j=1
j≠k

Nl′∑
k=1

∫
⟨
𝛿(r′ − Rj(0))𝛿(r′ + r − Rk(t))

⟩
dr′. (5.39)

Rj(t) represents the position of atom j at time t, and thus GD
ll′

(r, t) represents the correlation
between atoms of type l at time zero with atoms of type l′ at later time t. Thus the exact
interpretation of total diffraction is that it yields an instantaneous “snapshot” of the
interatomic vectors.

The Fourier transformation of experimental data (Eq. 5.34) is in practice performed
numerically by software, and for equally spaced data this can be done efficiently by
use of Filon’s quadrature [23]. Fast Fourier transform techniques can also be used for
the purpose; at first sight these may appear unsuitable, due to the requirement for 2n

points, but this requirement can be met by padding with zeroes at high Q. For unequally
spaced data numerical integration methods can be used. The numerical evaluation of the
Fourier transform in Eq. 5.34 essentially involves a weighted sum over the measured
intensity points, yi ± ei, and Toby and Egami [24] have shown that the error on the
Fourier transform can also be evaluated by a suitable summation of the intensity errors,
ei. To a reasonable approximation, their result can be simplified for equally spaced data
to give the error on D(r) as

𝜎D(r) ≈
ΔQ
𝜋

(
2
∑

i

e2
i

)1∕2

, (5.40)

where ΔQ is the spacing between the intensity points. It is also possible to derive the
correlation function using inverse methods [25]. This involves having a trial real-space
correlation function, comparing its Fourier transform with the experimental data in Q
space, and adjusting the real-space correlation function so that the agreement in Q space
is optimized. An advantage of inverse methods is that the effect of Q-resolution can
readily be incorporated. On the other hand, it is not clear how to evaluate the errors on
a correlation function produced in this way. More importantly, for inverse methods, the
mathematical description of the real-space resolution function is not clear, which is a
disadvantage for peak-fitting methods of peak deconvolution (see Section 5.4.3), and for
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differentiating between small genuine peaks and artifacts (such as termination ripples,
see Section 5.4.2.2).

5.4 THE APPLICATION OF NEUTRON DIFFRACTION TO
STUDIES OF GLASS STRUCTURE

5.4.1 Experimental Corrections

ND has the advantage that the scattering length, b̄, is a constant which is independent
of Q (unlike X-ray or electron diffraction, which involve a Q-dependent form factor),
with the result that the diffraction pattern can be measured reliably to very high Q, with
a reliable normalization between the low and high Q regions. Furthermore, because the
interaction between the neutron and matter is relatively weak, experimental corrections
can often be performed relatively reliably. As a consequence of these advantages, highly
reliable results may be obtained, leading to trustworthy determinations of coordination
numbers, distributions of bond lengths, etc.

The Fourier transformation of the experimental data required to obtain the correla-
tion function (see Eq. 5.34) involves integrations of the distinct scattering, iN(Q), over
the full Q-range that has been measured. For this to be reliable, it is essential that the
different regions of iN(Q) are correctly weighted relative to each other, and for this to be
achieved it is necessary to correct the data for all the various experimental effects that
cause the data to have any kind of Q-dependent suppression/amplification. Furthermore,
ND has the ability to produce results that are accurately normalized on an absolute
scale, and this leads to an ability to provide accurate coordination numbers. However,
for reliable absolute normalization to be achieved, it is necessary to perform a full set of
experimental corrections on the data for the following effects [26]:

� Detector dead-time. After a detector chain has counted a neutron, it is unable
to count another neutron for a period of time. Thus more intense regions of the
signal are suppressed, and it is necessary to correct for this effect.

� Subtraction of backgrounds. It is necessary to subtract the contribution to the
scattering that arises from general backgrounds, and from the sample container.

� Absorption. This is when a neutron is permanently absorbed by a nucleus.
� Attenuation. This is when the incident and scattered flux of neutrons are reduced

due to further scattering events.
� Multiple scattering. When neutrons are scattered more than once, this is called

multiple scattering. Multiply scattered neutrons are removed from the incident
and scattered beams, as considered by the theory described above, but they are
still detected, and hence they lead to a further ‘background’ signal which must
be subtracted.

In principle, these effects (apart from multiple scattering) are relatively simple to
understand and account for. For example, the effects of absorption and attenuation can
be calculated by means of a generalization of Eq. 5.15, involving an integration over all
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possible neutron paths through the sample. However, in practice the various absorption
and scattering events are all interrelated [27]; for example, the multiple scattering from
the sample may be absorbed by the container, the single scattering from the container
may be multiply scattered by the sample, etc. Therefore the evaluation of a full set of
corrections is a complex and convoluted process, and sophisticated software is required.
Perhaps the most complete and reliable software currently available for this process is
Soper’s GudrunN program [28], which is available on the internet [29].

Although it is possible to correct the experimental data for all of the effects outlined
above, it is best to use an experimental setup in which they are made as small as possible.
A useful rule of thumb for diffraction is that the sample should not scatter more than
5% of the incident beam. Most samples are available in the form of a powder or coarse
grains, in which case it is essential to use a sample container, and this should be designed
so that the container scattering is minimized. Sometimes it is possible to make a glass
sample in the form of a cylindrical rod, in which case a container is not required, and
this is the ideal experimental setup.

As is apparent from Figure 5.9, vanadium has a smaller coherent neutron scattering
length than any other element. Thus the scattering from vanadium is almost entirely
incoherent (see Eqs.5.24 and 5.25), with the consequence that the Bragg peaks observed
from a sample of pure vanadium metal are extremely small. Thus vanadium plays a
special role in neutron scattering; for example, vanadium is often used to make sample
containers because of its very small Bragg peaks. Perhaps the best sample containers for
ND on glasses are cylinders made of thin vanadium foil, say 25 or 40 μm in thickness,
because this minimizes the container scattering which must be subtracted in the correc-
tions process. Another special metal for neutron scattering is Ti62Zr38 alloy which has
an average coherent neutron scattering length of zero, and hence is a null alloy with no
Bragg peaks [30]. It is possible to make a null alloy in this way, firstly because the two
elements concerned have coherent scattering lengths of opposite sign (as shown in Fig-
ure 5.9, a few elements, such as titanium, have negative scattering lengths), and secondly
because the Ti-Zr system forms a substitutional solid solution. Ti62Zr38 alloy is useful
for making sample containers for use with demanding sample environment equipment,
such as is used for high pressure. However, it suffers from the disadvantages that it is not
available as a thin foil, and its diffraction pattern has diffuse scattering due to local order.

Another important use of vanadium, due to its mostly incoherent scattering, is as a
calibration standard, which can be expressed simply by the following equation:

Normalized sample spectrum =
(

sample − empty container background

vanadium − background

)
.

(5.41)

In an ND experiment on a glass it is normal to also measure the diffraction pattern of a
vanadium standard (either a cylinder if the detectors cover a wide angular range, or a flat
plate if the detectors are all at low scattering angles), so that this normalization can be
performed. This provides correct inter-normalization of results from different detectors,
allows the corrected differential cross-section to be normalized on an absolute scale
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Figure 5.17. Time-of-flight spectra for (a) vanadium; (b) polycrystalline silicon; and (c) GeO2

glass. Also shown are the normalized spectra for (d) polycrystalline silicon and (e) GeO2 glass.

(since the differential cross-section of vanadium can be calculated according to Eqs.5.24
and 5.25, using the known cross-section, 𝜎inc, and since b̄ for vanadium is almost zero,
see Figure 5.9), and for a pulsed source diffractometer allows the flux distribution, Φ(𝜆),
arising from the moderator to be normalized out. Figure 5.17 illustrates the effect of flux
normalization for pulsed diffraction data, using data from the former LAD diffractometer.
The vanadium T-O-F spectrum is closely related to the flux distribution Φ(𝜆) arising
from the moderator. The upturn in Φ(𝜆) at low times is due to high energy epithermal
neutrons whilst the broad peak at intermediate times is the peak of a Maxwellian
distribution whose position depends on the moderator temperature (c.f. Eq. 5.4).
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TABLE 5.2. Absorption cross-sections of natural elements for the 10 most absorbing
elements and some other elements of interest [32].

Element B Cd In Sm Eu Gd Dy
𝜎abs(2200 ms−1)/barns 767 2520 193.8 5922 4530 49700 994
Element Ir Hg Pa O Si Cl Ge
𝜎abs(2200 ms−1)/barns 425 372.3 200.6 0.00019 0.171 33.5 2.2

For values of r less than the shortest interatomic distance in the glass, the total
correlation function, TN(r), should ideally be equal to zero. However, as shown in
Figures 5.10, 5.14, 5.15 and 5.16, real experimental results are not identically zero
in this region. Firstly, there are Fourier ripples and experimental noise in this region.
Secondly, an unphysical peak is often observed at a short distance in the range below 1 Å,
which arises because of imperfections in the experimental corrections. Most corrections
change relatively slowly in Q space, compared to the genuine experimental information,
and hence inadequacies in the corrections give rise to the unphysical peak at low r.
As Wright has advocated [31], the behavior of the low r region of an experimental
correlation function can be used to indicate how well the experimental corrections have
been performed. Nevertheless, there are inverse methods of obtaining the correlation
function [25], which usually involve setting the correlation function to zero below a
minimum distance, in which case it is not possible to determine the quality of the
corrections from the low r region.

For neutron energies in the thermal region (i.e., for T of order 300 K or lower in
Eq. 5.4), many nuclei have an absorption cross-section known as a “1/v cross-section”,
which means that it is proportional to the neutron wavelength; 𝜎abs(𝜆) = 𝜆𝜎0. For this
reason, absorption cross-sections are conventionally quoted for a neutron speed of 2200
ms−1, and Table 5.2 gives the absorption cross-sections at this speed for the 10 most
absorbing natural elements, together with a few other relevant elements. As a rule of
thumb, if the average absorption cross-section for a sample is of order 1000 barns or
greater, then absorption is too large for it to be feasible to measure a useful diffraction
pattern. On the other hand, if the average absorption cross-section is of order 100 barns
or less, it is possible to obtain a meaningful diffraction pattern which can be corrected
successfully. For example, chlorine has a significant absorption cross-section, and thus
the correlation function for liquid CCl4 shown in Figure 5.16 is relatively noisy at low
r, due to the significant correction for absorption. Boron is an important element in
the glass field, but samples containing higher concentrations of natural boron are too
absorbing for useful ND results to be obtained; for example, if a B2O3 sample containing
natural boron is used, it may not be possible to observe any scattered neutrons, due to the
high absorption. However, the isotopes of boron are available at relatively low cost, and
hence it is normal to make samples using highly enriched 11B (𝜎abs(

10B) = 3835 barns,
𝜎abs(

11B) = 0.0055 barns [32]). Boron is also widely used as a shielding material in
neutron diffractometers, usually in the form of boron carbide or boron nitride. Cadmium
and gadolinium are also widely used for shielding, but they are of more limited benefit at
a pulsed neutron source, because they are virtually transparent to higher energy neutrons.
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5.4.2 Resolution

5.4.2.1 Reciprocal-space Resolution As shown in Figure 5.16, the features
in the ND pattern of a glass are much broader than the Bragg peaks observed in the
diffraction pattern of a crystalline powder. The glass diffraction features are thus much
broader than the reciprocal-space resolution of a typical neutron diffractometer, and this
can give the impression that the Q-resolution is not an important effect when studying
glasses; this is not correct. Grimley et al. [33] have given the following simple considera-
tion of the effect of Q-resolution, which has been confirmed by other more sophisticated
approaches [24,25,34,35]. The measured diffraction pattern is a convolution of the ideal
diffraction pattern (i.e., measured with perfect resolution) with the resolution function.
According to the convolution theorem, the measured correlation function is then the
product of the ideal correlation function with the Fourier transform of the resolution
function. A simple description of the resolution function is a Gaussian centered at the
origin, and hence in real space this corresponds to another Gaussian centered at the
origin. In conclusion, this shows that the effect of Q-resolution is that the measured
differential correlation function, DN(r), becomes increasingly damped at higher r. The
coordination numbers determined from ND are normally slightly below the expected
value (e.g., for SiO2 glass a value of 3.9 has been obtained by ND [5], and this is typical,
whereas the expected value for this tetrahedral glass is four), and this can be ascribed to
the damping of the peaks in the correlation function that arises from the Q-resolution.
Nevertheless, for a modern diffractometer with high Q-resolution, coordination numbers
closer to the ideal values tend to be measured, see Section 5.4.3.

5.4.2.2 Real-space Resolution The Fourier transform in Eq. 5.34 requires that
the distinct scattering, iN(Q), is known to infinitely large values of Q, but in practice it is
only possible to measure experimental data up to some finite value, Qmax. If the Fourier
transform is calculated from the experimental data with a sharp cut-off at Qmax, then
the resultant correlation function has significant termination ripples, which can easily be
mistaken for real features (e.g., see Figure 5.18c). Hence it is common [36] to multiply
the distinct scattering by a modification function, M(Q), which is chosen so as to reduce
the termination ripples, though at the expense of some loss of resolution in real space.
The most commonly used modification function is the Lorch function [37], defined as
follows:

MLorch (Q) = sin (ΔrQ)
ΔrQ

(5.42)

MLorch (Q) = 0 Q > Qmax.

The use of the Lorch function reduces the termination ripples to a very large extent.
(Indeed with the high Qmax of pulsed ND, the effect of thermal motion is often to
entirely remove the termination ripples from the correlation function). However, this
gain is achieved at the expense of some loss of resolution, with a full width at half max-
imum (FWHM) ΔrLorch = 5.437∕Qmax. If the Fourier transform is performed without a

ach25
Text Box
where delta-r=pi/Qmax  
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Figure 5.18. Neutron diffraction results for 2CaO⋅Na2O⋅3P2O5 glass [2, 42]. (a) The distinct

scattering, iN(Q), with the high Q region shown in an inset. (b) The step and Lorch modification

functions [37] for Qmax = 55Å−1. (c) The total neutron correlation function, TN(r), obtained

using the two modification functions shown in part (b) with the first peak region shown in an

inset.
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modification function (i.e., with a “step” modification function which equals unity for
Q ≤ Qmax and is zero for Q > Qmax) this yields the best possible real-space resolution,
with a FWHM Δrstep = 3.791∕Qmax, but at the expense of relatively large termination
ripples on either side of a real peak in the correlation function, TN(r). In earlier work, [38]
a pseudo Debye-Waller factor, exp(−𝛼2Q2) (see Eqs.5.29 and 5.30), with an arbitrary
‘thermal factor’ 𝛼, was used as a modification function, but this reduces the termination
ripples less than with the use of the Lorch function. Occasionally other modification
functions have been proposed [39, 40], but currently the use of the Lorch function is
pre-eminent [41].

The high energy neutrons which are available only for an accelerator source (see
Section 5.2.3.2) make it possible to measure diffraction patterns to higher values of
Qmax than is possible for a reactor source, so that a narrower real-space resolution
width, Δr, can be obtained. For example, Figure 5.18a shows the distinct scattering for
2CaO⋅Na2O⋅3P2O5 glass [2,42]; for phosphate glasses oscillations are often observable
to very high momentum transfer [43], and for this glass they can be discerned up to
Qmax = 55Å−1, as shown in the inset to the figure. Figure 5.18b shows the Lorch and
step modification functions, evaluated for this value of Qmax, whilst Figure 5.18c shows
the corresponding total correlation neutron functions, TN(r). The inset to Figure 5.18c
shows the detail of the first peak region, for interatomic distances of order 1.5 Å, which
are due to P–O bonds. For the step modification function there is a clear splitting into
two peaks at 1.4800(6) Å and 1.5977(10) Å, due respectively to bonds to non-bridging
and bridging oxygen. The step modification function gives the best possible resolution,
but at the cost of significant termination ripples in the correlation function; on the other
hand, the Lorch modification function [37] greatly reduces the termination ripples, but
at the cost of an increase in the resolution width, so that the two types of P–O bond lead
to an asymmetry in the first peak, rather than a clear splitting.

Figure 5.19 shows simulations of the total neutron correlation function for an ideal
GeO4 tetrahedron with bond length rGeO = 1.7369 Å, using physically realistic values for
the RMS variation in interatomic distance (⟨u2

GeO⟩1∕2 = 0.0422 Å and ⟨u2
OO⟩1∕2 = 0.1005

Å). The two peaks are due to interatomic distances between Ge–O and O–O atom pairs.
The simulations in Figures 5.19a and 5.19b were calculated using the Lorch modification
function [37] and values of Qmax that are typical of what can be achieved in an experiment
at a good reactor source (24 Å−1) and at an accelerator source (40 Å−1), respectively.
The effect of the value of Qmax on the real-space resolution width is evident, but the
figure also illustrates how the high values of Qmax available at an accelerator source can
virtually remove the termination ripples. This effect occurs if the resolution width, Δr,
is not larger than the width which arises from the RMS variation in interatomic distance
(which has a FWHM given by

√
8 loge 2⟨u2

jk⟩1∕2 ≈ 2.355⟨u2
jk⟩1∕2 ), and often occurs using

an accelerator source.
Pulsed ND at an accelerator source has played an important role in investigations

of the bond lengths in phosphate glasses, because it is the only experimental technique
which has proved able to resolve the difference in the lengths of the two types of P–O
bond [43], due to the high values of Qmax (∼50 – 60 Å−1) which can be achieved. In pure
P2O5 glass [44], 40% of the oxygen atoms bond to only one phosphorus atom, and they
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Figure 5.19. Simulation of the total neutron correlation function, TN(r) (as obtained using

the Lorch modification function [37]), for an ideal GeO4 tetrahedron, showing the effect

of maximum momentum transfer, Qmax, on real-space resolution and termination ripples.

(a) Qmax = 24 Å−1, (b) Qmax = 40 Å−1.

are described as terminal oxygens (TOs). As modifier oxide is added to P2O5, the number
of oxygens which are truly terminal (i.e., bonded to only one cation) decreases, whilst
the number of non-bridging oxygens (i.e., oxygens which are bonded to one phosphorus
and also one or more modifier cations) increases. However, the ND data show that there
is no clear distinction between the lengths of the P-TO and P-NBO bonds [43].

In view of the importance of real-space resolution, it is worthwhile to discuss the
factors which determine the value of Qmax. For a reactor source, Qmax is determined
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simply by the maximum achievable scattering angle, which is limited at 2𝜃 = 180◦,
and the wavelength, 𝜆, which depends on the parameters of the monochromator and the
temperature of the moderator. For an accelerator source, very high energy epithermal
neutrons are often available, and in principle experimental data can be measured up to
several hundred Å−1. However, in practice the useful value of Qmax depends on the rate
at which the oscillations in the distinct scattering, iN(Q), diminish at high Q. The width,⟨u2

jk⟩1∕2 , of the first peak in the correlation function determines the Debye–Waller factor,

exp(−Q2⟨u2
jk⟩∕2), which governs the rate at which the amplitude of the oscillations in

iN(Q) decrease at high Q (see Eqs.5.29 and 5.30). Thus the information in the diffraction
pattern diminishes rapidly at higher Q. Also the statistical accuracy of the ND pattern
measured at an accelerator source becomes progressively worse as Q increases (as is
apparent in Figure 5.12, for example), and furthermore the Q-resolution width at high
Q is proportional to Q, so that the diffraction features are increasingly broadened as Q
increases. Therefore in practice the value of Qmax is the point at which the amplitude of
the oscillations in iN(Q) becomes small in comparison with the size of the error bars on
the experimental data. For each sample, the width of the first peak in TN(r) is different,
and hence the useful value of Qmax depends on the sample. All of the factors discussed
cause it to rapidly become harder to observe the oscillations in iN(Q) as Q increases,
and hence the prospect of measuring ND to significantly higher values of Qmax than
currently available is very challenging.

5.4.3 Peak Fitting and Integration

The previous section shows how ND can be very powerful for determining bond lengths
in glasses, but it can also be very powerful for determining coordination numbers. The
concept of coordination number is very important in structural studies of glasses. A
simple definition is that the coordination number is the total number of neighbors of a
central atom. When this concept is applied to glasses it must be recognized that usually
it is only possible to determine the average coordination number (i.e., the coordination
number averaged over all relevant central atoms) since different types of atomic site
cannot necessarily be differentiated. Coordination numbers for a glass can be determined
experimentally from the area under a peak in the correlation function. If a peak in TN(r)
at a distance rll′ , due to a pair of elements l−l′, has an area All′ , then the corresponding
coordination number is given by

nll′ =
rll′All′

(2 − 𝛿ll′)clb̄lb̄l′
. (5.43)

where 𝛿ll′ is the Kronecker delta. To determine the coordination number from a peak in
TN(r), it is necessary to identify the pair of elements, l−l′, which give rise to the peak,
and to determine the area of the peak, All′ , which can be determined either by fitting or
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integration. For a discussion of the area of a peak it is necessary to consider the factors
which give rise to the broadening of the peak:

1. Real-space resolution. This has been discussed in the preceding section, and its
effect can be calculated analytically.

2. Thermal motion of the atoms. The thermal motion of the atoms gives rise to a
broadening of a peak in the correlation function which, in the harmonic approx-
imation, can be described by a Gaussian. Even at very low temperature there is
significant thermal broadening due to zero-point motion.

3. Static disorder. If there is structural disorder in the interatomic distances then
this also gives rise to a broadening of a peak in the correlation function. For
example, the two P–O distances in a phosphate glass (e.g., see Figure 5.18c)
give rise to a broadening of the first peak in the correlation function. If a peak
in the correlation function is asymmetric, then this is definite evidence of static
disorder. However, generally speaking, it is not possible to distinguish static
disorder from thermal disorder, in which case the RMS variation in interatomic
distance has contributions from both effects.

The contribution to the partial correlation function tll′(r) due to a single interatomic
distance rjk with RMS variation in distance ⟨u2

jk⟩1∕2 is

tjk(r) =
njk

rjk

(
2𝜋

⟨
u2

jk

⟩)1∕2
exp

⎛⎜⎜⎜⎝−
(r − rjk)2

2
⟨

u2
jk

⟩ ⎞⎟⎟⎟⎠ , (5.44)

where njk is the coordination number, that is, the average number of k type atoms around
a j type atom. In reciprocal space, this corresponds to

ijk (Q) = njkb̄jb̄k

sin(Qrjk)

Qrjk
exp

⎛⎜⎜⎜⎝−
⟨

u2
jk

⟩
Q2

2

⎞⎟⎟⎟⎠ . (5.45)

It is simpler computationally to take the effect of real-space resolution into account by
using Eq. 5.45 to calculate the reciprocal-space function, and then to Fourier transform
to real space, using the same modification function and value of Qmax as for the experi-
mental data. This procedure gives the function which is then fitted to the experimental
correlation function.

Figure 5.20a shows the results of fitting a single peak to the neutron correlation
function of GeO2 glass (determined using the Lorch modification function with Qmax =
40 Å−1) [16], and the corresponding parameters are given in Table 5.3. A very close fit
to the peak is obtained, as is apparent from the oscillations in the residual, which are of
similar magnitude to the oscillations in the experimental data on either side of the peak.
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Figure 5.20. The first peak region of the total neutron correlation function, TN(r), for (a)

GeO2 glass [16] (thick grey line is experiment, thin black line is fit, dashed line is residual);

(b) 18Cs2O⋅88GeO2 glass [16]; and (c) 2CaO⋅Na2O⋅3P2O5 glass (thick grey line is experiment,

thin line is fit, dashed line is fitted P-NBO component, dotted line is fitted P-BO component,

dot-dashed line is residual (offset)) [2,42].
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TABLE 5.3. Parameters from fitting the total neutron correlation function, TN(r).

Sample Qmax / Å−1 Atom pair, l−l′ rll′ / Å ⟨u2
ll′
⟩1∕2 / Å nll′

GeO2 40 Ge-O 1.7369(2) 0.0422(3) 4.032(8)
2CaO⋅Na2O⋅3P2O5 55 P-NBO 1.4800(6) 0.0362(5) 1.87(3)

P-BO 1.5977(10) 0.0490(9) 1.96(4)

There is no apparent asymmetry in the observed peak, and probably the static disorder
in the Ge–O bond lengths is very small. The fitting method is well suited to determining
the area under such a peak, because it allows the (positive and negative) contributions
from the termination ripples to be taken into account correctly. The coordination number
of the fit (see Table 5.3) is within 1% of the ideal value of four for this tetrahedral glass,
and a major reason for the high accuracy of this result is the high Q-resolution of the
modern diffractometer that was used (see Section 5.4.2.1).

Figure 5.20c shows the results of fitting the sum of two peaks to the neutron
correlation function of 2CaO⋅Na2O⋅3P2O5 glass (determined using the step modification
function with Qmax = 55 Å−1) [2, 42], and the corresponding parameters are given in
Table 5.3. In this case, it is expected that the structure of a phosphate glass involves
two discrete, different bond lengths (P-NBO and P-BO), and clearly fitting is well
suited to determining them accurately. The software which has been used to produce the
correlation function fits shown in this chapter (and which can also fit X-ray correlation
functions) is available on the internet [45].

On the other hand, Figure 5.20b shows the neutron correlation function of a binary
germanate glass containing 18 mol% Cs2O (determined using the Lorch modification
function with Qmax = 40 Å−1) [16]. The position of the peak maximum is shifted to
slightly longer distance, compared to pure GeO2 glass, but the more marked effect is
the appearance of a significant shoulder on the right hand side of the peak. This peak
asymmetry is definite evidence of a distribution of Ge–O bond lengths in this glass. It
is generally accepted that the addition of modifier to GeO2 results in the average Ge–O
coordination number increasing above four, and then decreasing back towards four when
larger amounts of modifier are added, and ND has provided the main proof for this effect
[16, 46, 47]. However, it is not yet fully established whether the higher coordinated
germanium atoms are six-coordinated or five-coordinated (or both). Nevertheless, in
either case the higher coordination is likely to involve more than one bond length; for
example, it is well known that octahedral coordination usually involves two different
bond lengths (axial and equatorial) due to the Jahn–Teller effect. If several different
bond lengths (or a distribution of bond lengths) are expected within the envelope of a
single correlation function peak, then it is debatable whether the fitting approach is the
best way to characterize the peak. The advantages of fitting are that the contributions to
the peak area from the termination ripples are included, and that it provides a reasonable
way of taking into account the overlap with an adjacent peak (such as the O–O peak
which is centered at approximately 2.8 Å in germanate glasses—see Figure 5.20b. In
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this way, the experimental peak can be fitted using a small number of discrete distances,
and thus the peak can be parameterized and a reasonable estimate of its area obtained
[47]. A pitfall of this approach is that it provides values for several bond lengths which
are not meaningful, with the hazard of overinterpretation.

In cases where there is an extended distribution of interatomic distances, it is
preferable to determine the area under a peak in the experimental RDF by integration,
which avoids the problem of potential overinterpretation, and then to use the coefficient
(2 − 𝛿ll′)clb̄lb̄l′ from Eq. 5.43 to determine the coordination number. For this approach it
is necessary to choose the limits for the integration, and usually the best choice is to use
the position of the first minimum on either side of the peak. For example, integration of
the RDF for the peak shown in Figure 5.20b between the two adjacent minima (at 1.48
and 2.30 Å) gives a Ge–O coordination number of 4.36, and this could correspond to 36%
of the germaniums being 5-coordinated, or 18% being 6-coordinated [16]. Although it
is not necessary to explicitly specify the distance range for a simple case like GeO2,
where there is a narrow distribution of bond lengths that is well separated from any other
interatomic distances (see Figure 5.20a), for an extended, overlapping distribution (as
for 18CsO⋅82GeO2, Figure 5.20b) it is essential.

5.4.4 Normalization of Data

An ND measurement has the potential to measure coordination numbers which are more
accurate than can be obtained by any other technique, because of the lack of a form factor
and the ability to achieve a reliable normalization of the experimental data. However,
as discussed below, for accurate coordination numbers to be obtained it is essential
that the density and chemical composition of the sample are well known. Indeed, it is
doubtful whether it is meaningful to determine a particular coordination number unless
the composition of the sample is known.

As shown in the previous section (see Eq. 5.43), the coordination number is derived
from the area, All′ , under a peak in the measured correlation function, TN(r). However, an
accurate coordination number can only be obtained if firstly the experimental corrections
are performed as well as possible (see Section 5.4.1), and secondly the final correlation
function is normalized as well as possible; if the normalization of the correlation function
is not reliable, then the value obtained for the peak area, All′ , is not reliable. The
coefficient (2 − 𝛿ll′)clb̄lb̄l′ in Eq. 5.43 depends on the atomic fraction for element l, and
hence it is clear that the chemical composition of the sample must be well known for a
reliable coordination number, nll′ , to be derived from the peak area, All′ . However, the
density of the sample is also of great importance due to the role it plays in determining the
average density contribution, T0(r) (see Eq. 5.35). The quantity determined directly from
the diffraction experiment is the differential correlation function, DN(r), and then this
is added to T0(r) to finally obtain the total correlation function, TN(r) (see Figure 5.10).
Thus, for TN(r) to be reliable, it is required that T0(r) is reliable, and DN(r) is correctly
normalized relative to T0(r).

If the composition and density of the sample are both well known, then the average
density contribution, T0(r), can be calculated reliably and it can be used to optimize the
normalization of TN(r), leading to accurate coordination numbers [48]. To illustrate this
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Figure 5.21. The low r region of the correlation function for crystalline Y2O3, showing (a)

Dmeas(r) prior to renormalization (thick grey line), together with –T0(r) (dashed line) and a fit

to the first peak in Dmeas(r) (thin black line) and (b) TN(r) after renormalization (thick grey line),

together with a simulation (thin black line).

procedure, experimental data are shown for crystalline Y2O3; the structure of this crystal
is well known [49], and there can be little doubt that the coordination is octahedral with
nYO = 6, and that the values for the density and chemical composition are reliable.
Figure 5.21a shows the measured differential correlation function, Dmeas(r), as obtained
by Fourier transformation of the corrected experimental diffraction pattern of Y2O3, and
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also the negative of the average density contribution, –T0(r), calculated from the density
and chemical composition,

T0 (r) = 4𝜋rg0 ⟨b̄
⟩2

av = −S0r. (5.46)

In the low r region before the first peak, in principle TN(r) is zero (i.e., there are no
interatomic distances below a certain minimum) and DN(r) should equal −T0(r). In
practice DN(r) is expected to oscillate about –T0(r), due to the presence of termination
ripples and experimental noise. It is apparent in Figure 5.21a that Dmeas(r) for Y2O3
does not agree closely with −T0(r). Figure 5.21a shows the result of a fit to the first
peak in Dmeas(r) of a single peak (Eq. 5.44) together with a linear term, –Sfitr, where
Sfit is a constant. The area of the fitted peak shown in Figure 5.21a gives a Y–O
coordination number of 6.53. However, if the renormalizing factor S0∕Sfit is applied,
then the renormalized Y–O coordination number is 5.93, which agrees closely with the
ideal value of six, with an error of about 1%. Figure 5.21b shows the total correlation
function calculated according to

T (r) = T0 (r) + S0

Sfit
Dmeas (r) , (5.47)

together with a simulation of the total neutron correlation function, derived from the
reported crystal structure [49]. The quality of the final normalization is apparent from
the close agreement between the areas under the simulated and measured functions.
The question arises as to why the data may not be perfectly normalized after careful
corrections have been performed, and there are several possible reasons. For example,
it may not be possible to determine the number of atoms in the beam accurately (the
sample may not be perfectly uniform, the definition of the beam may not be precise, the
beam profile may not be uniform, etc.), or there may be a sample-dependent contribution
to the background.

5.4.5 Scattering at low Q

5.4.5.1 Homogeneous Samples Ideally, the Fourier transform (Eq. 5.34)
requires that the distinct scattering is measured to a minimum Q-value of zero, but
this cannot be achieved experimentally. However, it has long been established [50] that
for a homogeneous sample (i.e., a sample which has no small angle scattering—see
Section 5.4.5.2) the low Q limit may be represented as

i (Q) = A + BQ2. (5.48)

This form may be justified by considering that the scattering must be symmetric, that is,
the same diffraction pattern must be measured for negative values of Q as for positive
values. It can be useful to fit Eq. 5.48 to the low Q region (say below 1 Å−1 or less) of
the measured distinct scattering as a means of extrapolating to Q = 0, prior to Fourier
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transformation. A simple way of performing such a fit is to plot i(Q) versus Q2, and then
to perform a linear fit to the low Q region.

For a single phase liquid (i.e., a liquid without variations in chemical composition
or density) at temperature T, the Q = 0 limit of the structure factor (for ND or XRD) is
given by [51]

S (0) = g0kBT𝜅. (5.49)

where kB is the Boltzmann constant and 𝜅 is the isothermal compressibility of the
liquid. Strictly, this equation does not apply to a glass, because glasses are not in true
thermodynamic equilibrium. However, a glass made by melt quenching can be regarded
as a liquid which has been frozen at the glass transition temperature, Tg, and Wright et al.
[52] have shown in a careful study of SiO2 glass that the zero Q limit of the diffraction
pattern of the glass is given by evaluating Eq. 5.49 for the melt at the glass transition
temperature, using the high frequency determination of the isothermal compressibility.
This has important implications for the nature of the glassy state, since it shows that the
fluctuations of the melt are frozen in at temperature Tg; this is a strong argument against
the formation of a micro-crystalline structure for the glass.

5.4.5.2 Inhomogeneous Samples If a sample has microstructure (i.e., inho-
mogeneities on a length scale, L, of order say ∼10–1000Å) then the diffraction pattern
will exhibit additional scattering at low Q (less than say 0.1 Å−1), known as small
angle neutron scattering (SANS) because it is normally measured at small scattering
angles. The only true Bragg peak which arises from non-crystalline samples is the (000)
reflection, which cannot be observed because it coincides with the transmitted beam.
However, microstructure in the sample leads to a broadening of the Bragg peaks, and
at low Q this is observed as SANS. A detailed discussion of microstructure is beyond
the scope of this chapter, but it is worth noting that a fine powder sample will exhibit a
significant SANS signal in the diffraction pattern.

To illustrate the phenomenon of SANS, it is worthwhile to consider an isolated
(surrounded by empty space) sphere of radius R, with a uniformly distributed scattering
length density, 𝜌b, containing N atoms. For this uniform sphere, the distinct scattering
is calculated analytically [53] as

iN (Q) = 9I0

(
sin y − y cos y

y3

)2

, (5.50)

where y = QR, and the Q = 0 limit is I0 = 𝜌2
bV2

s ∕N, with sphere volume Vs = 4𝜋R3∕3.
(This is one of the very few uniform geometric objects for which an analytic result
exists.) Figure 5.22a shows this function for a sphere of radius 20 Å. The scattering
rises very strongly at low Q (less than about 0.2 Å−1) to values greatly in excess of
those observed at higher Q (see Figure 5.16). It is fundamental to note that SANS is
observed if there is a contrast between the scattering length density of the object, 𝜌b,
and its surroundings.
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Figure 5.22. (a) The predicted distinct scattering for an isolated sphere of radius 20 Å, with

I0 = 1000. The inset shows a Guinier plot of the prediction, together with the corresponding

Guinier approximation. (b) The measured nuclear SANS for amorphous Dy7Ni3. The inset shows

a Porod plot of the experimental data, together with a Porod fit to the data.

If the scattering length density varies over a characteristic distance, L (e.g., the
particle size), and the Q-values of the experimental data are small in comparison with L−1

(i.e., QL ≪ 1), then the SANS can be described in terms of the Guinier approximation
[54]. In this approximation, the coherent differential cross-section for a sample with
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Np particles of uniform scattering length density 𝜌bp, embedded in a matrix of uniform
scattering length density 𝜌bm, is

d𝜎
dΩ

coh
=

V2
p N2

p

N
(𝜌bp − 𝜌bm)2 exp

(
−Q2R2

G

/
3
)

, (5.51)

where RG is the radius of gyration (i.e., the RMS distance of part of the particle from
its center). In this regime it is useful to plot the experimental data as loge(I) versus Q2,
as shown in the inset to Figure 5.22a, in which case the slope of a linear fit yields an
estimate of the particle size, RG.

If the experimental Q-values are large in comparison with L−1 (i.e., QL ≫ 1), then
the SANS can be described in terms of the Porod approximation [55],

d𝜎
dΩ

coh
=

2𝜋ApNp

N
(𝜌bp − 𝜌bm)2Q−n, (5.52)

where Ap is the surface area of a particle. If the structures giving rise to the SANS are
compact and smooth then the dimensionality, n, has the value of four, but if the structures
are fractal in nature then the value of n differs from four [56, 57]. Figure 5.22b shows
a measurement of the nuclear SANS for the melt-spun amorphous metal Dy7Ni3 [58]
(measured on the former D17 small angle diffractometer at the Institut Laue Langevin).
In the Porod regime it is useful to plot the experimental data as loge(I) versus loge(Q),
as shown in the inset to Figure 5.22b, in which case the slope of a linear fit yields
the dimensionality. The Porod fit shown in Figure 5.22b yields a slope close to four,
indicating that the SANS arises from the structure of the surface of the melt-spun
ribbons. Contrast matching is an important experimental technique for SANS; this
involves placing the sample in liquids of different scattering length density (which
may be prepared, for example, by mixing H2O and D2O in different proportions) and
observing the effect on the SANS signal. For example, this technique has been applied to
melt-spun amorphous metal ribbons [59, 60]; it was possible to almost entirely remove
the observed SANS, showing again that it arises from the surface structure of the ribbons.

The ordinary ND pattern (sometimes known as WANS—wide angle neutron scatter-
ing), as described elsewhere in this chapter, has conventionally been analyzed separately
from the SANS signal. However, the advent of new ND instrumentation, particularly
the Near and Intermediate Range Order Diffractometer [61] (NIMROD) at the ISIS
Facility, which covers a Q-range wide enough to measure both regions simultaneously
enables the interesting possibility of modeling both the microstructure and the atomic
level structure at the same time.

5.4.6 Sample-Related Difficulties

As discussed in Section 5.4.4, for reliable and meaningful results to be obtained from an
ND experiment on a glass, it is essential that the composition and density of the sample
are well known. Thus glass samples studied by ND should always be well characterized,
using as many different experimental techniques as possible.
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TABLE 5.4. Energies of nuclear resonances below 4 eV for stable nuclei [62, 63].

Resonance
Z Element Isotope energies/eV

38 Sr 87Sr 3.54(2)
45 Rh 103Rh 1.257(2)
46 Pd 108Pd 2.96(1)
48 Cd 113Cd 0.178(2)
49 In 113In 1.80(3)

115In 1.457(2)
52 Te 123Te 2.334(8)
62 Sm 147Sm 3.397(20)

149Sm 0.0973(2) 0.872(3)
63 Eu 151Eu 0.321(1) 0.460(1) 1.055(3) 1.815(7) 2.717(5) 3.368(6) 3.710(6)

153Eu 1.727(5) 2.456(5) 3.294(6) 3.944(8)
64 Gd 152Gd 3.31(4)

155Gd 0.0268(2) 2.008(10) 2.568(13) 3.616(6)
157Gd 0.0314(2) 2.825(15)

65 Tb 159Tb 3.339(5)
66 Dy 160Dy 1.88(2)

161Dy 2.71(2) 3.68(2)
163Dy 1.713(4)

67 Ho 165Ho 3.92(1)
68 Er 167Er 0.460(2) 0.584(2)
70 Yb 168Yb 0.597(1)
71 Lu 175Lu 2.590(5)

176Lu 0.1413(3) 1.565(4)
72 Hf 177Hf 1.098(20) 2.388(2)
73 Ta 180Ta 0.20(1) 0.435(1) 2.061(2) 2.203(4) 3.952(4)
75 Re 185Re 2.156(4)
77 Ir 191Ir 0.6528(50)

193Ir 1.298(1)
92 U 235U 0.290(5) 1.124(5) 2.028(4) 2.76(1) 3.145(5) 3.615(5)

5.4.6.1 Nuclear Resonances A nucleus absorbs neutrons very strongly if the
neutron energy is close to the energy of an excited state of the nucleus; this phenomenon
is known as a nuclear resonance [62, 63]. It is extremely hard to obtain useful ND data
if the neutron energy is close to a resonance, due to the very strong absorption, but
fortunately the great majority of isotopes do not have a resonance in the energy range
used for ND.

Table 5.4 lists the energies for all resonances of stable nuclei which are less than 4
eV [62,63]. If a sample contains any of these nuclei then the effect of the resonance needs
to be considered in an ND experiment. For a constant wavelength diffractometer it is
necessary to choose a neutron wavelength so that the energy (see Eq. 5.3) is not close to a
resonance energy. For a T-O-F diffractometer, the effect of resonances is more complex,
and this is illustrated by Figure 5.23 which shows the corrected differential cross-section
for a 10K2O.90TeO2 glass [64], measured on the former LAD diffractometer [65]. The
123Te nucleus has a resonance at 2.334(8) eV (see Table 5.4) [62], so that there is
strong absorption in the region of the spectra which correspond to this energy, and this
gives rise to a negative peak in the experimental data. The negative peak occurs over a
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Figure 5.23. The (corrected and normalized) differential cross-section of 10K2O⋅90TeO2

glass, IN(Q), measured on the former LAD diffractometer [65]. The curves for the different

detector banks are shown with vertical offsets for clarity.

different Q range for each detector angle, illustrating an important point in understanding
experimental problems with T-O-F diffraction; if a problem is due to a diffraction effect
then the related feature occurs at the same Q-value for different detector angles, but
if a problem is due to a constant-energy effect (such as a resonance) then the related
feature occurs at different Q-values for different detector angles. For the data shown in
Figure 5.23, there is also a strong positive peak for the intermediate detector angles (20◦,
35◦, 60◦, and 90◦) because these detectors were sensitive to 𝛾-rays; when a neutron is
absorbed by a nucleus it may give rise to a prompt 𝛾-ray which arrives at the detector
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before neutrons with the energy of the resonance. However, modern neutron detectors
should have very low sensitivity to 𝛾-rays, so that this phenomenon is not observed.
For a sample containing an element with a resonance, a reliable result (covering a full
Q-range) can be obtained from a T-O-F diffractometer if the detectors cover a large
range of angles; in this case a reliable result is obtained by combining the spectra from
the different angles so that the Q-range for each angle that is affected by the resonance
is avoided. Nevertheless, Table 5.4 shows that there are very few elements which are
ill-suited to study by ND. For example, europium and gadolinium have a large number
of resonances in the thermal region so that they are effectively “black” and useful
ND results cannot be obtained. Neutron resonances are particularly common for rare
earth (RE) elements, and hence (considering the chemical similarity of REs) it may be
advisable when planning an experiment to choose to study samples containing REs for
which resonances are not a problem.

5.4.6.2 Hydrogen Contamination It is always important to minimize chem-
ical contamination of the sample, but for ND the effect of hydrogen contamination
is especially profound. Some glasses, such as borates or phosphates, are particularly
prone to pick up moisture (in the form of either –OH or H2O) [66, 67], and much better
ND results will be obtained if this contamination is reduced or eliminated. It may be
advisable to place a sample under vacuum or in a sealed, dry environment as soon after
manufacture as possible. Sometimes moisture contamination can be removed by drying
in a vacuum oven, but this is only effective at removing surface H2O, and has little effect
on –OH or H2O in the bulk. If the chemical formula of the sample of interest includes
hydrogen, then ND results can be greatly improved if the sample is deuterated (i.e., if the
hydrogen atoms are replaced with deuterium atoms). Nevertheless, it should be borne
in mind that if a deuterated sample is exposed to normal atmosphere, the deuteration
may be reversed within a few minutes, due to exchange with hydrogen in atmospheric
moisture, which can be rapid.

For some scientific studies, however, it is desirable to measure ND for a sample with
a significant hydrogen content. For example, Figure 5.24 shows experimental data for a
sample of an amorphous zeolite precursor, which contains a large amount of hydrogen
[68]. This illustrates the problems that arise with hydrogen; first, the very large incoherent
cross-section of hydrogen (see Section 5.3.5) leads to a large incoherent background, and
second, the inelasticity effect for hydrogen (see Section 5.3.6.1) is very severe, causing
a strong rise in the self scattering at low Q. In fact, the approximate methods which
are commonly used to calculate the self scattering (such as that originally proposed
by Placzek [8]) break down if the sample contains hydrogen (because the neutron and
proton mass are very similar), and it is necessary to remove the self scattering by
an empirical method. Figure 5.24 shows a smooth fit to the experimental IN(Q) data
which was achieved by using a cubic spline with variable knot spacing, together with
the estimate of the distinct scattering that was obtained by subtraction of this fit [68].
Although such empirical methods are useful, it is always preferable to remove hydrogen
from the sample if possible.

As shown in Section 5.3.6.1 (see Figures 5.11 and 5.12), the effect of inelasticity is
much reduced at low scattering angle, and for this reason T-O-F neutron diffractometers
with all of the detectors at low angle, such as SANDALS [69] (Small Angle Neutron
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Figure 5.24. (a) The differential cross-section measured by Bank5 (93◦) of the GEM diffrac-

tometer [2] for amorphous zeolite precursor LTA5 [68], together with a smooth cubic spline

fit. (b) The estimate of the distinct scattering which is obtained from a difference of the two

curves in (a).

Diffractometer for Amorphous and Liquid Samples) and NIMROD [61] at the ISIS Facil-
ity, are available for the study of samples with low atomic mass (e.g., aqueous solutions).

5.4.6.3 Crystal Contamination ND is much more penetrating than XRD
(which may only probe a short distance into the surface of the sample, depending
on the X-ray wavelength and the sample composition), and thus for a sample containing
a crystalline impurity the ND pattern is more likely than the XRD pattern to exhibit
Bragg peaks. Furthermore, ND (especially time-of-flight ND) tends to have high Q-
resolution, which also acts to make Bragg peaks more apparent. It is thus common for
samples which appear fully amorphous by laboratory XRD to be shown to contain a
significant crystalline contamination when ND is performed.
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Figure 5.25. The distinct scattering, iN(Q), for a tin borate glass sample with nominal com-

position 70SnO⋅30B2O3 before and after removal of Bragg peaks (see text) [13]. Also shown is

a simulation of the diffraction pattern for crystalline SnO2 and vertical tick marks indicate the

positions of the Bragg peaks.

Of course it is preferable to study phase pure glass samples that do not contain
crystalline material, but sometimes this is not possible, and then it may be desir-
able to remove the Bragg peaks from the diffraction pattern. As a simple example,
Figure 5.25 shows diffraction data for a tin borate-based glass of nominal composi-
tion 70SnO⋅30B2O3 [13], which exhibits Bragg peaks due to crystalline impurities.
In this case, the Bragg peaks have been removed by the simple expedient of fitting
a straight line underneath the Bragg peak. Figure 5.25 also shows a simulation of
the diffraction pattern of crystalline SnO2 in the rutile phase [70], calculated using
CrystalMaker® software [71]. The predominant crystalline impurity is clearly SnO2,
due to disproportionation and then oxidation of tin in the melt [72]. The example in
Figure 5.25 illustrates the difficulty of Bragg peak removal. As Q increases, the Bragg
peaks become closer together, and it becomes impossible to remove them individually;
thus the contribution from the crystalline impurity cannot be removed at higher Q.
It is also not possible to remove the crystalline contribution to the diffraction pattern
well by using a conventional crystallographic simulation method (e.g., the Rietveld
method [73]), because such methods do not correctly describe the short range order
(especially the effects of correlated atomic motion, see Section 5.3.6.2) and hence they
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do not predict the higher Q region of the diffraction pattern. Therefore, the best way
to remove the contribution due to a crystalline impurity may be to measure ND for
a pure sample of the impurity, followed by a suitable subtraction of the correlation
functions [74].

5.4.7 Partial Correlation Functions

5.4.7.1 Isotopic Substitution A limitation of a standard ND experiment is
that the information obtained is not element-specific. The neutron correlation function,
TN(r), has contributions from all possible pairs of elements in the sample (e.g., Si–Si,
Si–O, and O–O for SiO2), and as r increases the contributions from the different pairs
rapidly overlap and cannot be resolved. Isotopic substitution (first reported by Enderby
et al. in a study of liquid Cu6Sn5 [75]) is a very important technique that can address
this problem [18]. In this section, the method is first illustrated by a particularly elegant
example, and is subsequently discussed from a general point of view.

There are a few elements which have isotopes with both positive and negative
scattering lengths (H, Li, Ti, Cr, Ni, Sm, Dy, and W), in which case isotopic substitution
can be used so that the coherent scattering length for the element is zero. This is known
as the null technique; if an element has a coherent scattering length of zero, then this
element does not contribute to the distinct scattering, and none of its partial correlation
functions contribute to the measured correlation function. This technique is especially
powerful if it can be applied to both elements in a sample with two elements—this has
been called the double-null isotopic substitution technique [76].

The total correlation function measured in a single diffraction experiment is a sum
of pairwise partial correlation functions (see Eq. 5.36), and for the binary amorphous
metal Dy7Ni3 the total neutron correlation function is given by

TN (r) = cDyb̄2
DytDyDy (r) + 2cDyb̄Dyb̄NitDyNi (r) + cNib̄

2
NitNiNi (r) , (5.53)

where cDy = 0.7 and cNi = 0.3 are the atomic fractions for the two elements. There
are three independent partial correlation functions, because the Dy–Ni and Ni–Dy
functions are not independent (see Eq. 5.37). (In general, a sample with Ne elements has
Ne(Ne+1)/2 independent partial correlation functions.) ND was measured for all four
samples, NatDy7

NatNi3, NatDy7
0Ni3, 0Dy7

NatNi3, and 0Dy7
0Ni3 (where 0Dy and NatDy

indicate dysprosium with the null and natural isotopic compositions, respectively) and
the measured diffraction data are shown in Figure 5.26. For the 0Dy7

0Ni3 sample, there is
no coherent nuclear scattering from either element, and this enables the magnetic scatter-
ing, IM(Q), to be measured, so that it can be subtracted from the results for the other three
samples. At room temperature, which is greatly in excess of the 35 K magnetic ordering
temperature for Dy7Ni3, the magnetic scattering is almost entirely self scattering,
given by

IMS (Q) = 2
3

(𝛾r0)2
∑

l

cl
||fl (Q)||2 ⟨𝜇2

l

⟩
, (5.54)
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Figure 5.26. The differential cross-section, IN(Q), of amorphous Dy7Ni3 for three different

isotopic compositions (superscripts Nat and 0 indicate the natural isotopic composition and

the null isotopic composition), shown as a continuous line [58]. The dashed line indicates the

sum of the magnetic scattering, IM(Q), and the calculated nuclear self scattering, IS(Q), for each

sample.
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where 𝛾 is the neutron magnetic moment in nuclear magnetons and r0 is the classical
electron radius. fl(Q) and ⟨𝜇2

l ⟩ are respectively the magnetic form factor and mean
square magnetic moment for element l. Thus IM(Q) is proportional to |fDy(Q)|2, where
fDy(Q) is the dysprosium magnetic form factor. For the NatDy7

0Ni3 sample, b̄Ni = 0,
and hence Eq. 5.53 shows that the experimental correlation function yields a direct
measurement of the tDyDy(r) partial correlation function. Similarly, the 0Dy7

NatNi3
sample has b̄Dy = 0 and yields a direct measurement of the tNiNi(r) correlation function.
These two like-atom partial correlation functions can then be combined (according
to Eq. 5.53) with the correlation function measured for the NatDy7

NatNi3 sample to
obtain the unlike-atom correlation function, tDyNi(r). Figure 5.27 shows the three
partial correlation functions for Dy7Ni3, obtained by use of the double-null isotopic
substitution technique [58]. The figure also shows the partial correlation functions
calculated for a Dy7Ni3 hard sphere liquid, according to the Percus–Yevick equation
[77, 78]. For a binary hard sphere system, the interatomic distance for unlike-atom
contacts is midway between the two distances for like-atom contacts, but (as is shown
by the comparison with the hard sphere calculation in Figure 5.27) this is not the case
for Dy7Ni3. Instead the measured partial correlation functions show that pairs of nickel
atoms are close but not touching. The amorphous metal has a more ordered structure
than a hard sphere liquid, and the observed Ni–Ni nearest neighbor distance is similar
to that in crystalline Dy3Ni2 [79], where it arises from two nickel atoms packed into
the recess on either side of a square of four dysprosium atoms (as shown in the inset to
Figure 5.27).

For most elements, it is not possible to use the null technique, but nevertheless
isotopic substitution can be performed (although there are some elements for which
isotopic substitution is not feasible, either because there is only one stable isotope,
or because the difference between the scattering lengths of the available isotopes
is too small). If only one substitution is performed, then this is known as a first
difference. In this case, let A be the element on which isotopic substitution is performed
so that two samples are made in which it has scattering lengths b̄A and b̄ ′

A. The
correlation functions measured for these two samples are T(r) and T′(r). Using these
two measurements it is possible to separate any two of the three combinations A–A,
A–X and X–X (where X is any element other than A). However, the two most useful
combinations are a simple difference, or a weighted difference, derived from Eq. 5.36
as follows:

T (r) − T′ (r) = cA

(
b̄A − b̄ ′

A

) ⎛⎜⎜⎜⎝
(
b̄A + b̄ ′

A

)
tAA (r) + 2

∑
k

k≠A

b̄ktAk (r)

⎞⎟⎟⎟⎠ , (5.55)

b̄AT′ (r) − b̄ ′
AT (r) =

(
b̄A − b̄ ′

A

) ⎛⎜⎜⎜⎝
∑

j
j≠A

∑
k

k≠A

cjb̄jb̄ktjk (r) − cAb̄Ab̄ ′
AtAA (r)

⎞⎟⎟⎟⎠ , (5.56)
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Figure 5.27. The three measured partial correlation functions for amorphous Dy7Ni3 [58],

together with the partial correlation functions for a Percus–Yevick calculation of the partial

correlation functions for a binary hard sphere liquid. The inset in the figure shows how a similar

Ni–Ni distance arises in crystalline Dy3Ni2 [79] (large, translucent spheres are Dy, smaller, solid

spheres are Ni).
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Equation 5.55 shows that the result of a simple difference only includes correlations
which involve element A; that is, it eliminates correlations which do not involve A.
Equation 5.56 shows that the result of the weighted difference eliminates all correlations
involving A except the A–A correlation, that is, it eliminates all unlike-atom correlations
which involve A. Note that a first difference, as in Eq. 5.55, is equivalent to a XAFS
(X-ray Absorption Fine Structure) measurement at the absorption edge of element A, but
with the added advantage that it yields longer range information, which is not accessible
to the XAFS experiment due to the absence of data at low wavevector.

If another substitution is performed, say a measurement in which the scattering
length of element A is changed to b̄ ′′

A , so that the correlation function is T′′(r), then this
is known as a second difference. It is then possible to obtain a complete separation into
A–A, A–X and X–X contributions, for example,

tAA (r) =
b̄A

(
T′ (r) − T′′ (r)

)
+ b̄ ′

A

(
T′′ (r) − T (r)

)
+ b̄ ′′

A

(
T (r) − T′ (r)

)
cA

(
b̄A − b̄ ′

A

) (
b̄A − b̄ ′′

A

) (
b̄ ′′

A − b̄ ′
A

) . (5.57)

For a sample containing Ne elements, there are Ne(Ne+1)/2 independent partial
correlation functions, and hence this number of isotopic substitution measurements
must be made in order to achieve a complete separation of all the partial pairwise
atomic correlation functions; this rapidly becomes prohibitive as the number of elements
increases.

For simplicity, consider a sample containing two elements A and B (e.g., Dy7Ni3).
If three correlation functions, T(r), T′(r), and T′′(r), are measured for three samples
with scattering lengths (b̄A, b̄B), (b̄ ′

A, b̄ ′
B), and (b̄ ′′

A , b̄ ′′
B ), respectively, then the measured

correlation functions are related to the partials by

⎡⎢⎢⎣
T(r)
T′(r)
T′′(r)

⎤⎥⎥⎦ = [A]
⎡⎢⎢⎣

tAA(r)
tBB(r)
tAB(r)

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎣

cAb̄ 2
A cBb̄ 2

B 2cAb̄Ab̄B

cAb̄ ′2
A cBb̄ ′2

B 2cAb̄ ′
Ab̄ ′

B

cAb̄ ′′2
A cBb̄ ′2

B 2cAb̄ ′′
A b̄ ′′

B

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

tAA(r)
tBB(r)
tAB(r)

⎤⎥⎥⎦ . (5.58)

The three partial correlation functions can then be obtained by means of an inversion of
the matrix A,

[t (r)] = [A]−1 [T (r)] . (5.59)

Thus the partial correlation functions are essentially obtained by solving simultaneous
equations, and Eq. 5.57 shows that the extraction of the partials depends critically on
the difference between scattering length values. Even if the scattering length values
are known very precisely, the matrix inversion amplifies the errors on the measured
correlation functions. Thus the differences in scattering length need to be as large as
possible, for the derivation of partials to be well-conditioned. As Livesey and Gaskell
have proposed [80], Turing’s number, Tn [81], can be used as a figure of merit for isotopic
substitution experiments. Tn gives an upper limit on the factor by which the fractional
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error in the partial functions exceeds the fractional error in the measurements, and is
given approximately by

Tn = |A|E ||A−1||E, (5.60)

where the Euclidean norm is given by adding in quadrature the components of the
matrix A,

|A|E =

(∑
i,j

A2
ij

)1∕2

. (5.61)

For example, the study of Dy7Ni3 using the double-null isotopic substitution technique
is one of the most well-conditioned of all isotopic substitution studies, with Tn = 12.3.
For most isotopic substitution studies in the literature, the value of Tn is typically an
order of magnitude larger. Consequently, there are severe experimental requirements
on an isotopic substitution experiment if a satisfactory separation of partials is to be
achieved. First, it is essential that the samples be identical, apart from their differing
isotopic composition, and XRD is usually the preferred way to verify this. Furthermore
the measurements on the isotopic samples must be performed in the same way, to reduce
the effect of systematic errors. High statistical accuracy diffraction data are required,
which requires long counting times and also high detector stability.

An excellent example of isotopic substitution on a glass has been given by Eck-
ersley and Gaskell who have reported both first difference [82] and second difference
[83] isotopic substitution for 48CaO⋅49SiO2⋅3Al2O3, using calcium isotopes. The first
difference showed that modifier ions have a well-ordered nearest neighbor shell and
also ordering at longer distances up to ∼10Å. Another example of a second difference
measurement has been given by Petri et al. [84] for GeSe2 glass, using both Ge and Se
isotopes to obtain a full separation of the partial functions, finding evidence for defects in
the form of homopolar (i.e., Ge–Ge and Se–Se) bonds. The method of H/D substitution
has made a big impact in the study of molecular liquids, especially aqueous solutions
[85], because there is a large difference between the hydrogen and deuterium scattering
lengths (b̄H = −3.739 fm and b̄2H = 6.671 fm [32]), and deuterated samples are available
relatively cheaply, with the possibility of deuterating specific molecular sites.

5.4.7.2 Other Methods An impediment to the widespread use of isotopic sub-
stitution is the very high financial cost of isotopic material (especially since ND requires
relatively large samples, say a few grams), and also the lack of suitable isotopes for some
elements. However, other methods may also be used to help to differentiate the various
partial contributions to the total correlation function. The most widely applicable of these
methods involves the combination of ND and XRD. The strength of X-ray scattering for
a given element is proportional to the atomic number, Z, whereas the coherent neutron
scattering length varies haphazardly across the periodic table (see Figure 5.9). Thus the
relative weights of the various partial functions are different in the X-ray and neutron
correlation functions (the X-ray correlation function, TX(r), is usually more strongly
dominated by the contributions involving heavier elements). Hence the use of both ND
and XRD on a sample can reveal more than can be obtained by the use of one radiation
alone. A detailed discussion of the combined use of ND and XRD is beyond the scope
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of this chapter, but a good example of the method has been given by Benmore et al. [86]
in a study of calcium aluminate glasses. Another good example of the application of the
method can be found in a study of a high lead silicate glass, 80PbO⋅20SiO2 [87], for
which TN(r) is dominated by partials involving Pb or O, whilst TX(r) is dominated by
partials involving Pb; simultaneous modeling of the two correlation functions provides
information that is much more element-specific than is possible using only one radiation,
and for the first time it has been possible to derive a detailed structural model showing
how the lone-pairs of electrons are arranged relative to each other in a glass network
containing lone-pair cations.

Another approach which has been used to differentiate the various partial contribu-
tions to the total correlation function is isomorphous substitution. This method involves
performing diffraction on two samples that are identical, except that one element is
substituted for another, and the two elements are assumed to be structurally identi-
cal. Mostly this approach has been applied to amorphous metals [88], although it has
also been applied successfully to investigate the environment of rare earth (RE) ions
in phosphate glass. [89] Clearly the requirement that the two substituted elements are
structurally identical is a limitation of the technique, but RE elements are probably the
best suited of all to this technique.

In some cases, ND can be used in more novel, specialized ways to obtain element-
specific information. For example, a magnetic difference ND technique has been
applied to directly observe the distribution of Tb–Tb distances in a phosphate glass,
24.6Tb2O3⋅72.2P2O5⋅3.2Al2O3 [90]. First, the ND pattern was measured with the sam-
ple at a temperature 4 K, with the sample in the paramagnetic state. Second, the ND
pattern was measured again, after application of a high magnetic field of 4 T, which is
large enough to cause a high degree of alignment of the Tb magnetic moments. Fig-
ure 5.28a shows the two measured diffraction patterns, whilst Figure 5.28b shows their
difference. In the absence of a magnetic field, with the sample in the paramagnetic state,
there is no correlation between the orientations of pairs of Tb magnetic moments, and
hence there is no structural information in the magnetic contribution to the scattering.
However, with the high applied magnetic field, there is a high degree of alignment of
the magnetic moments, with the result that the magnetic scattering contains structural
information. Thus the difference shown in Figure 5.28b depends exclusively on Tb–Tb
correlations. Figure 5.29a shows the differential correlation function, DN(r), measured
before and after application of the magnetic field, whilst Figure 5.29b shows their dif-
ference, together with a simulation of the first two peaks. The first peak at 3.9 Å is due
to pairs of Tb ions which are both bonded to the same non-bridging oxygen, whilst the
second peak at 6.4 Å is due to two Tb ions which are bonded to different oxygens in
the same PO4 tetrahedron. Knowledge of the RE–RE distances in glass is of particular
interest for laser and optoelectronic applications. Figure 5.29c shows a reverse Monte
Carlo (see Section 5.4.9) simulation of the partial Er-Er differential correlation function
for erbium metaphosphate glass [91] (together with an arbitrary scaling of ΔDN(r));
there is a remarkable agreement between the two independent results.

Diffraction with polarized neutrons can also be used to measure partial functions
for magnetic materials [92]. However, it is worth noting that novel techniques which
make use of magnetic scattering are limited to a very small Q-range (with Qmax in the
range 5–10 Å−1) due to the magnetic form factor (e.g., see Figure 5.26).
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Figure 5.28. The differential cross-section for 24.6Tb2O3⋅72.2P2O5⋅3.2Al2O3 glass at 4 K,

showing (a) the diffraction pattern with and without the application of the 4 T magnetic field;

and (b) the field-on minus field-off difference, ΔIN(Q). [90].

For some elements it is also possible to measure partial functions using the anoma-
lous dispersion technique. For this technique, it is necessary that the element of interest
has a nuclear resonance at low energy (see Section 5.4.6.1). The method makes use of
the fact that there is a strong wavelength-dependence of both the real and imaginary
parts of the scattering length close to an absorption resonance. Although it is potentially
a very powerful technique, anomalous dispersion is experimentally challenging, since
it necessarily involves measurements for which absorption is very high, and thus far
it has only been applied to glasses containing samarium (14Sm2O3⋅13Al2O3⋅73GeO2
[93] and 20.5Sm2O3⋅79.5P2O5 [94, 95]).
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Figure 5.29. The differential correlation functions for 24.6Tb2O3⋅72.2P2O5⋅3.2Al2O3 glass at

4 K [90], showing (a) the differential correlation function with and without the application

of the 4 T magnetic field; (b) the field-on minus field-off difference, ΔDN(r) (together with

the simulation of the contribution from the first two distances described in the text); and (c) a

reverse Monte Carlo simulation of the partial Er–Er differential correlation function for erbium

metaphosphate glass [91] (together with an arbitrary scaling of ΔDN(r)).
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5.4.8 Interpretation of Results

It is beyond the scope of this chapter to exhaustively review methods of interpretation of
glass diffraction results. Instead a number of general concepts that are useful for gaining
an understanding of ND results on glass structure are presented.

5.4.8.1 Crystallite Models The diffraction pattern of a glass consists of a series
of peaks that are much broader than the sharp Bragg peaks normally measured for a
polycrystalline powder (see Figure 5.16). However, it is well known that when crystallites
become very small there is an observable broadening of the Bragg peaks, according to
the Scherrer equation [96], which gives the FWHM of a Bragg peak as

ΔQ = 2𝜋K
L

, (5.62)

where L is the crystallite dimension and K (∼1) is a shape factor. Thus it has often been
regarded as attractive to describe glass structure in terms of a model involving very small
crystallites to account for the broad diffraction peaks [97–99]. Figure 5.30 shows the ND
patterns of normal polycrystalline PdO and of hydrous PdO, which involves extremely
small crystallites of diameter about 18 Å (illustrated by the inset to the figure) [100].
The simulation in the figure was calculated for a spherical particle of PdO of diameter
18 Å (inset) using the Debye equation (Eq. 5.28), and the SANS for this model was
removed by use of Eq. 5.50, which is equivalent to placing the model in a hole in a
homogenous medium of the same scattering length density. Even though the crystallites
in hydrous PdO are extremely small, the diffraction pattern retains the broadened Bragg
peaks of normal PdO, and it is also apparent from the differential correlation function
(Figure 5.31) that the order extends to a relatively long distance compared to that
observed in a glass. For a microcrystalline model to give a reasonable representation of
diffraction results for a glass, it is necessary that the crystallite dimension be of order
one unit cell, in which case there is no translational symmetry and the model ceases to
be crystalline. Thus microcrystalline models of glass structure are not viable, because
the crystallites contain too few unit cells to be considered crystalline, and because they
lack a description of the region between crystallites [101] (see also Section 5.4.5.1).
Instead, disordered models involving a distribution of atomic sites are to be preferred,
such as the random network model [99, 101–103] which is commonly used to describe
the structure of covalently bonded glasses.

5.4.8.2 Bonding and Bond Lengths When planning an ND experiment on a
glass, it is useful to estimate the nearest neighbor distances likely to be observed; it can
be preferable to choose to study a system in which there is little or no overlap between
the nearest neighbor peaks in the correlation function, because then the peak parameters
(e.g., bond lengths and coordination numbers) can be determined more reliably. This
can be done by reference to the structure of crystalline materials of similar composition,
or by use of tabulated values for the sizes of atoms. The ionic radii provided by Shannon
[104] are often used for this purpose; for example, the ionic radii of Ge4+ and O2− (with
coordination numbers of 4 and 2, respectively) are 0.390 Å and 1.35 Å, giving a Ge–O
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Figure 5.30. The measured distinct scattering (thick grey lines), iN(Q), for anhydrous PdO

(vertically offset) and for hydrous PdO [100]. Also shown (thin black line) is a simulation of

iN(Q) for a spherical particle of PdO of diameter 18 Å (inset) embedded in a homogenous

medium.

distance of 1.74 Å, which is a good estimate of the bond length in GeO2 glass (see
Table 5.3). For amorphous metals, it is usual to make use of the Goldschmidt radii for
12-fold coordination [105], simply because coordination numbers in metals are usually
much larger.

Electrostatic bond strength (EBS) is another very simple concept, first proposed by
Pauling [106], which can be of great use in understanding glass networks. If a cation
with formal charge ze is coordinated by 𝜈 anions (all of the same type), then the bond
going from the cation to each anion has an EBS, s, defined as

s = z
𝜈
. (5.63)

Pauling [107] postulated that in a stable structure the magnitude of the formal charge,
–𝜁e, of an anion is exactly or nearly equal to the sum of the strengths of the bonds to it
from the adjacent cations, so that

𝜁 =
∑

k

sk =
∑

k

zk

𝜈k
. (5.64)
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Figure 5.31. The measured differential neutron correlation function (thick grey lines), DN(r),

for anhydrous PdO (vertically offset) and for hydrous PdO [100]. Also shown are simulated (see

text) differential neutron correlation functions (thin black lines).

This criterion may be considered to be an expression of the necessity for charge balance
in stable structures. It is of great use in determining which anion environments are likely
to occur [47, 108].

The neutron correlation function, TN(r), provides information on the distribution
of interatomic distances which can be much more detailed than a single bond length,
and the concept of bond-valence (BV) can be of great use in obtaining a more profound
understanding of the results. BV is an empirical concept, based on information from a
large number of crystal structures, according to which the valence of an atom, i, may be
expressed in the form

Vi =
∑

j

vj =
∑

j

exp
(Rij − dij

b

)
, (5.65)

where the summation is performed over its neighbors, j. dij and vij are respectively the
length and the valence of the bond between atoms i and j. Rij is the BV parameter for the
atom pair (i,j) (tabulated values for Rij, based on numerous crystal structures, are given

by Brese and O’Keeffe [109]) and b is a universal constant (= 0.37Å). If we make the
simplifying assumption that all of the nij neighbors to atom i have the same bond length,
rbv

ij , then this interatomic distance is given by

rbv
ij = Rij + b loge

(nij

Vi

)
. (5.66)
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Although the BV method has been developed for crystal structures [110], it is becoming
increasingly clear that it is a powerful tool for understanding glass structure [111].
Equation 5.66 shows that the bond length increases as the coordination number increases.
For example, for Ge–O coordination numbers of 4, 5, and 6, Eq. 5.66 predicts Ge–O
bond lengths of 1.7480, 1.8306, and 1.8980 Å, respectively [16]; thus the appearance
of a shoulder on the right hand side of the Ge–O peak for 18Cs2O.82GeO2 glass
(in Figure 5.20b) is clearly associated with the presence of a significant fraction of
germanium atoms with a coordination number greater than four. The BV method is also
of great use in considering the environment of bridging oxygens, especially in glasses
such as tellurites in which there can be a large difference in the lengths of the bonds
[64, 112].

5.4.8.3 Coordination Polyhedra As well as understanding the bond lengths
(or interatomic distances) between pairs of atoms in the glass, it is also of interest
to understand the geometry of the coordination shell around each atom, that is the
coordination polyhedron of each atom. For example, we may wish to determine the
number and geometry of anions X (e.g., O2−) around a cation A (e.g., Si4+) in a glass.

Obviously the coordination number for each type of atom is of great relevance for
a consideration of the coordination polyhedra. However, it must be acknowledged that
coordination numbers cannot usually be measured as accurately as the bond lengths.
As discussed in Section 5.4.4, the accuracy of the coordination numbers depends on
many factors, including the sample composition and density, and in the most favourable
cases coordination numbers can now be measured to within about 1% of the expected
value (e.g., see the fit results for GeO2 in Table 5.3, or the results for crystalline 𝛼-
TeO2 [112] which give nTeO = 3.95(3), compared to the expected value of four), but in
less favourable cases the accuracy will not be as good as this, for example if the sample
contains any hydrogen. As illustrated by the small errors on the bond lengths in Table 5.3,
the interatomic distances in a sample can be measured very accurately, especially if their
distribution is symmetric, as would be obtained if the distribution of static distances is
very narrow. (In fact, the bond lengths obtained from the neutron correlation function
are a true measure of the bond lengths in a material, because the effects of correlated
motion are treated correctly. This is in contrast to standard crystallographic methods,
which do not allow for correlated atomic motion, and hence sometimes underestimate
bond lengths [113]).

It follows from the discussion of the previous paragraph that it is important not to
rely solely on measured coordination number to determine the coordination polyhedron,
but also to consider the longer interatomic distances in the polyhedra (i.e., X–X). The
rXX/rAX ratio (or the X-Â-X bond angle) are very important signatures of the basic
structural units in the glass. For example, if rXX/rAX is close to 1.6330 (implying a bond
angle close to 109.47◦), then this is strong evidence that the basic structural unit is a
tetrahedron, which is the most common unit in network glasses.

Table 5.5 gives the structural properties of some simple coordination polyhedra with
coordination numbers of six or less, since these are relevant for glass forming cations in
network glasses. These structural units are also shown in Figure 5.32. All of the values
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Figure 5.32. Important examples of coordination polyhedra for glasses. (a) AX3 triangle;

(b) AX3 trigonal pyramid; (c) AX4 tetrahedron; (d) AX4 disphenoid; (e) AX5 trigonal bipyra-

mid; (f) AX5 square pyramid-based unit; (g) AX6 octahedron; (h) AX6 trigonal prism; (i) AX8

Archimedean antiprism; (j) AX12 icosahedron.

in Table 5.5 are given for a regular, undistorted unit, in which all A–X distances are the
same, and all equivalent pairs of X atoms have the same separation, rXX (for the square
pyramid the values are based on a reasonable angle value, 𝛽∼10◦). If the units are not
distorted, then the bond angle 𝜃 is given by

𝜃 = 2 sin−1
(

rXX

2rAX

)
, (5.67)

and if the atoms are considered to be spheres in contact then their radius ratio is

rA

rX
=

2rAX

rXX
− 1. (5.68)

The assumptions of equal A–X distances and equal equivalent X–X distances are likely
to be least good for the square pyramid-based AX5 unit, for which it is highly likely
that the apical A–X distance will be markedly different from the other bond lengths. For
example, in K2O⋅TiO2⋅2SiO2 [114] Ti occurs in TiO5 square pyramid units with four
bridging Ti–O bonds of length 1.96 Å to oxygens in the plane, and a non-bridging titanyl
Ti=O bond of length 1.65 Å to an apical oxygen. Similarly, the presence of terminal
oxygens in P2O5 and phosphate glasses leads to relatively large distortions of the PO4
units from the geometry of an ideal tetrahedron [44]. Also, in AX6 octahedra there is
likely to be a difference between equatorial and axial A–X bond lengths due to the
Jahn–Teller effect. Similarly, there is a pronounced difference between the equatorial
and axial Te–O bond lengths in a TeO4 disphenoid [112]. Nevertheless, despite the
distortions of the units that occur in many materials, it is still a useful starting point to



JWBS168-c05 JWBS168-Affatigato Printer: Yet to Come September 1, 2015 19:32 Trim: 6.125in X 9.25in

224 NEUTRON DIFFRACTION TECHNIQUES FOR STRUCTURAL STUDIES OF GLASSES

consider the ratio of distances (or the bond angle) as an important stage in identifying
the coordination and geometry around the atoms in a glass.

For amorphous metals and for larger modifier cations in network glasses, polyhedra
with larger coordination numbers than those given in Table 5.5 are usually appropriate
(e.g., trigonal prism, Archimedean antiprism, icosahedron—see Figure 5.32) [115–117].

5.4.8.4 Comparison with Crystalline Structures Glasses are structurally
different from crystals (see sections 4.5.1 and 4.8.1). However, the same interatomic
potentials (or bonding interactions) occur between atoms, regardless of whether they are
in a glass or in a crystalline solid, and therefore the local structure in a relevant crystal
can provide a useful indication of the local structure in a glass. Nevertheless, sometimes
there are important structural differences between glasses and crystals; for example,
B2O3 glass contains a large proportion of highly planar B3O6 boroxol groups, but these
superstructural units are not found in the crystalline forms of B2O3 [12]. Therefore,
ND results on a glass should be compared critically with related crystals, rather than
simply assuming that the local structure is exactly the same. For example, the addition
of modifier to GeO2 usually leads to crystal phases in which there are octahedrally
coordinated germanium atoms, but there is evidence that in the corresponding glasses
the higher coordination may be more uniformly distributed due to the formation of
5-coordinated germanium atoms [16].

For a full comparison of ND results for a glass with a crystal structure, it is essential
to simulate TN(r) for the crystal structure [127], taking into account both the real-space
resolution of the measurement, and the broadening effect of atomic motion. The effect
of real-space resolution is included in the simulation by convoluting the ideal correlation
function of the crystal (i.e., the correlation function calculated from the crystallographic
positions of the atoms) with the resolution function appropriate to the experimental
measurement. This resolution function depends on the modification function, and in
particular the value of Qmax used in the Fourier transformation of the experimental data
(see Section 5.4.2.2). The effect of thermal motions of the atoms is included in the
simulation by convoluting the ideal partial correlation functions of the crystal with a

Gaussian whose standard deviation is ⟨u2
ll′
⟩1∕2, the RMS variation in distance between

a pair of atoms of types l and l′. Due to the effects of correlated motion, the thermal

width ⟨u2
ll′
⟩1∕2 is a function of distance, r, with smaller values for short distances [15].

For example, a reasonable simulation of the correlation function of the quartz form of
GeO2 can be obtained with a thermal of 0.040 Å for Ge–O bonds, and 0.100 Å for all
longer distances between Ge and O atoms.

It is an intricate procedure to simulate the correlation function of a crystal, and
a computer program, XTAL, is available on the internet for this purpose [128, 129].
Examples of the use of this program are shown in Figure 5.31 and Figure 5.33b and c.

5.4.8.5 The First Sharp Diffraction Peak The peak in the diffraction pattern
of a glass with the smallest Q-value is usually the sharpest peak (e.g., see Figure 5.11
or 5.13), and this so-called first sharp diffraction peak (FSDP) has attracted a great
deal of attention [130]. Since the FSDP occurs at the lowest Q-value of any diffraction
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Figure 5.33. The total neutron correlation function, TN(r), of crystalline U4O9. (a) The exper-

imental correlation function, Texp(r), compared with the U–O and U–U contributions, TConr(r),

as determined by EXAFS [163]. (b) The experimental correlation function, compared with

the total neutron correlation function, TXTAL(r), simulated from the crystallographically deter-

mined structure of U4O9 [160]. (c) The experimental correlation function, compared with the

partial components of TXTAL(r) [160].
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peak, it relates to the longest “periodicity” in the glass structure. Furthermore, if the
first peak is the sharpest peak, then it is also the most slowly decaying correlation in
real space. Thus, the FSDP relates to the longest range order that exists in the glass
(in the absence of microstructure, which gives rise to small angle scattering), and this
is why it has received special attention, as key evidence for intermediate range order
(IRO). Furthermore, the FSDP has physical properties (e.g., temperature-dependence)
that are anomalous, and similar in different glass systems, which some workers interpret
as evidence of a universal phenomenon.

Wright has shown that the low Q side of the FSDP is well described by a Lorentzian,
which provides a convenient form with which to fit the peak and to determine its
position, Q1, width, and height [101]. There have been many phenomenological studies
of the way in which the properties of the FSDP depend on other parameters, such as
composition, pressure, etc., but these have shed little light on its origin. There is a
longstanding interpretation of the FSDP as arising from crystalline-like layers in the
glass structure [131, 132], such that its position is Q1∼2𝜋/L, where L is the inter-layer
spacing. More recently a view has emerged which is more consistent with the non-
crystalline structure of glass, in which the FSDP results from the periodicity arising
from the boundaries between a succession of the cages which comprise the structure of
a three-dimensional covalent network [133]. Alternatively, Elliott [134] has interpreted
the FSDP as arising from the arrangement of the voids in the network structure, but this
is essentially equivalent to the cage interpretation, since it is the contrast between the
voids and their boundaries that gives rise to the FSDP (as for small angle scattering—see
Section 5.4.5.2).

5.4.9 Modeling

The clearest information on a glass that can be obtained by ND concerns the short range
order (SRO). The interatomic distances and coordination numbers derived from ND
are potentially more accurate than for any other experimental technique, and much of
this chapter describes the means by which they may be determined reliably, so that the
coordination polyhedra can be investigated. Nevertheless, the way in which the structural
units connect together to form the extended structure of the glass (i.e., the intermediate
range order, IRO) is also of considerable interest. However, as the interatomic distance, r,
increases, the peaks in the correlation function become closer together, and their thermal
widths become larger because there is less correlation between the atomic motions [15].
Hence there is increasing overlap of the peaks at higher r, with the result that ND is
sensitive to IRO in a more subtle way than for SRO, and it is necessary to employ
modeling techniques to make progress with the investigation of IRO.

The ideal modeling solution would be to determine the three-dimensional position
of every atom relative to the other atoms in the sample. In principle, this is feasible when
performing single-crystal diffraction because information is obtained as a function of
the momentum transfer vector, Q. However, glasses are usually isotropic, or almost
isotropic, with the result that the measured diffraction pattern is condensed down to a
function of a single variable, the magnitude of the momentum transfer, Q = |Q|; that is,
the measured distinct scattering, i(Q), is an average over all possible orientations of the
sample relative to the incident neutron beam. This results in a loss of information so that
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it is not possible to deduce the positions of all the atoms in the sample.2 Conversely,
there may be an enormous number of different sets of atomic coordinates which would
all give rise to the same observed distinct scattering, i(Q). This situation is called the
uniqueness problem. For a structural model of a glass to be correct it is necessary that it
agrees with the observed diffraction pattern. However, if a model is consistent with the
diffraction pattern, this is not proof that the model is right—it is merely evidence that
the model is not wrong. Thus, unique structure determination is not possible.

The random network model for the structure of covalent glasses was proposed by
Zachariasen in 1932 [102], and this provides a description of the SRO in a glass in
terms of structural units which connect together with a degree of randomness (such as
a distribution of bond angles and dihedral angles). Originally there was some doubt
whether it was possible to form an extended three-dimensional structure on the basis of
the model, and this concern was allayed by the early ball-and-stick modeling technique.
A ball-and-stick model would be constructed by hand, and then photographed from more
than one direction so that the coordinates of the atoms could be digitized [135, 136]. A
similar approach was adopted for metallic glasses, in which a dense random packing
of hard spheres was modeled by filling a bag with ball bearings [137]. The correlation
functions of these models showed reasonable agreement with experiment. However, the
method is laborious, and has largely been superseded by computer modeling methods.
It is worth noting that most computer modeling methods make use of periodic boundary
conditions, and hence the model needs to be sufficiently large that its crystalline nature
is not a problem; according to the minimum image convention, this may be achieved if
the size of the unit cell is twice the longest significant distance in the glass [138].

Recent years have seen the development of techniques for obtaining structural
models of disordered materials in which a computer programme is used to move atoms
around inside a box so as to optimize the agreement with diffraction data. The most
widespread of these is the reverse Monte Carlo (RMC) method in which the atoms are
moved according to a variant of the standard Monte Carlo algorithm [138]; a move
which improves agreement with diffraction data is accepted, but if the move worsens
the agreement then it may be rejected or accepted according to a probability factor
[139,140]. Thus the aim is to produce a model for which the deviation from experiment
has been minimized (whereas for the standard Monte Carlo method it is the energy that
is minimized). For a large number of atoms, N (say N∼1000 or more), there are 3N
parameters; with such a large number of parameters a very close fit to the diffraction
data can potentially be obtained. According to the “uniqueness problem” there are many
models which may be produced by this method, and in fact it tends to produce the most
disordered model that is consistent with the diffraction data (and constraints) [141]. Thus
early RMC models of glass were not consistent with what was already known about
glass structure; for example, for SiO2 glass, which is well described as a random network
of corner-sharing SiO4 tetrahedra, many of the silicon atoms were 3- or 5-coordinated,
or had a 4-coordinated coordination polyhedron which was not tetrahedral [142].

2 Also the study of crystalline structures has the huge advantage that it is only necessary to determine the
coordinates of the atoms in one unit cell, which is then reproduced by translations to build up the full
three-dimensional structure.
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In response to the problems with early RMC models, the method was developed to
include constraints; for example, there can be restrictions on the distances between a pair
of atom types, or restrictions on the coordination numbers for a pair of atom types [143].
There have also been other variations on the RMC method, such as the inclusion of a
constraint based on BV [144] (see Section 4.8.2), which are intended to produce more
reasonable models. A more recent RMC variation, which appears promising, minimizes
the difference from diffraction for each of the individual atomic sites (whereas the
standard RMC method minimizes the difference from diffraction for the average atomic
site) [145]. With the addition of constraints, the RMC method has been able to produce
structural models which are consistent with diffraction data and are consistent with
what is already known about the nature of bonding in materials. However, the danger
introduced by the use of constraints is that the RMC simulation can no longer sample
configurations with different IRO (e.g., different ring statistics) to the starting model;
RMC is then a means of refining a starting model so that it has better agreement with
experiment, rather than a means of finding a fundamentally new model [140, 146].

A rather different method of modeling glass structure is provided by molecular
dynamics (MD) simulations [147, 148]. This involves filling a box with atoms, and
determining their trajectories by solving Newton’s equations of motion, using a particular
set of assumed potentials to describe the interactions between the various pairs of atoms.
Usually the system is simulated at a very high initial temperature so that it is liquid,
and then the temperature is reduced to mimic the quenching of a glass; an inherent
difficulty with the technique (due to computer limitations) is that the melt is quenched
at a very high rate (∼1012 K/s), which is much faster than for the quenching of real
glasses (∼1 – 106 K/s). A common problem with the use of MD to simulate glass is
that the comparison with experiment is cursory: one reason for this is that it is difficult
to know how to change the input potential to improve the agreement. However, it is
essential that models are compared quantitatively with experiment to assess their worth
[149]. A promising new development is thus the use of RMC to refine an MD model
so that it agrees well with diffraction data [150]. The DL_POLY package is perhaps
the most widely used MD software for glass simulation, and is readily available on
the internet [151]. DL_POLY performs classical MD simulations which use empirical
potentials, but a more recent development has been ab initio MD, which calculates the
forces between the atoms using quantum mechanics—a parameter-free, first-principles
approach [152, 153].

In the early days of RMC, the debate about the legitimacy of the method was almost
theological in character [154]. One criticism of the method is that it is unphysical, and
in particular that it does not involve the use of a potential. The aim of modeling a glass
structure is to produce a model that is consistent with all the available experimental data,
by whatever means the model is produced; in this author’s opinion, it is ironic that RMC
was criticized for producing models without the use of a potential, when those models
agree well with experiment, whereas MD modeling (which does use a potential) is often
unable to closely reproduce diffraction data. Nevertheless, this criticism was recently
addressed by the development of the empirical potential structure refinement (EPSR)
modeling technique [155]. This method is similar to RMC, but with the important
difference that the atoms are moved around in the box by use of the Monte Carlo
method, using potentials to describe the interatomic interactions, and then the potentials
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are adjusted to optimize the agreement with diffraction data. Significantly, there is little
requirement for constraints and the structural model obtained is not dependent on the
assumptions used to form the initial model. Nevertheless, the method is more successful
if XRD data can be used, in addition to ND data, and an excellent example of this has
recently been given in a study of 80PbO.20SiO2 glass by Alderman et al. [87].

A striking example of a successful result from the use of RMC has already been
mentioned in Section 5.4.7.2. The structure of several RE metaphosphate glasses was
simulated by RMC, using experimental data from both ND and XRD [91]. At the same
time a completely independent study used ND with a magnetic difference technique to
isolate the Tb–Tb correlation function in a terbium metaphosphate glass [90], and it was
found to show a remarkable similarity to the RE–RE partial function from the RMC
study (see Figure 5.29). The results of a diffraction experiment depend on the distances
between pairs of atoms in the sample, and so they can be used to determine a two-
body correlation function. Thus RMC simulation of diffraction data has the potential
to be able to extract two-body correlations well, as shown by the example of RE–RE
correlations in metaphosphate glasses. However, the IRO in a glass (e.g., the distribution
of rings) is characterized in terms of many-body correlations, which are not measured
directly by diffraction. Thus diffraction is sensitive to IRO in an indirect way—essentially
information about IRO is built up from diffraction results by a process of “triangulation”
of the various pairwise distances (as for the determination of coordination polyhedra,
see Section 5.4.8.3). For example, as yet, RMC [156, 157] and EPSR [158] have been
unable to reliably extract information on the presence of boroxol rings in B2O3 glass,
in contrast with what is known from other experimental techniques, such as Raman
scattering and NMR [12].

5.4.10 The PDF Method

The analysis of diffraction data by Fourier transformation to a real-space correlation
function was first used in a study of a crystalline form of sulphur in 1934 [159], but
for the next few decades the approach was developed almost entirely for the study of
non-crystalline samples (glasses and liquids), whilst almost all diffraction studies of
crystalline materials used reciprocal-space analysis methods, such as Rietveld refine-
ment [73]. However, in recent years the real-space correlation function method has
increasingly been applied to the study of crystal structures, in which case the method
is often called the PDF (pair distribution function) method [19, 20]; the function which
is called the PDF in such studies is usually the differential correlation function, DN(r),
introduced above in Eq. 5.34. The reason for using DN(r), rather than TN(r) which
is generally preferred for glasses, is that the differential correlation function is better
suited to the display of the much greater order at longer range in crystals (for example,
see Figure 5.31). The PDF method has proved very useful for structural investigations
of disordered crystals (i.e., crystals in which the contents of the unit cells are not all
exactly the same, and for which the local structure may differ from the average struc-
ture), and sometimes it is even useful for ordered crystals. Although “the PDF method”
essentially concerns the structure of crystalline materials, there is currently increasing
overlap between the study of the structure of non-crystalline materials and of disordered
crystalline materials, and thus it is useful for a glass scientist to be aware of the method.
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A brief illustration of the PDF method is given here using crystalline U4O9 as an exam-
ple of its use [160], because this is of at least some passing interest to glass scientists
due to the proposed presence of a “glassy part” in the structure, and the use of X-ray
spectroscopy.

Crystalline UO2 has the calcium fluorite structure, in which each uranium atom has
eight oxygen neighbors at a distance 2.368 Å, whilst the oxygen atoms are separated by
2.734 Å [160]. By means of a modification of the UO2 structure, a larger concentration
of oxygen can be incorporated, resulting in the formation of U4O9. The crystal structure
of U4O9 has been determined by single-crystal ND [161, 163], and the oxygens are
arranged around the center of a vacant cube with the geometry of a cuboctahedron. The
unit cell of U4O9 is relatively large and complex, containing 828 atoms on average,
with mean coordination number and bond length nUO = 8.328 and rUO = 2.354 Å,
respectively. However, a radically different structural view emerged on the basis of a
XAFS study, using the uranium LIII edge [163]. The results were interpreted as showing
first that there is separation into two phases, one with the UO2 structure, and one which
is glassy and is spectroscopically invisible (i.e., with a distribution of U–O bond lengths
which is too broad to be observed by XAFS), and secondly that there are short oxo bonds
(i.e., terminal U=O bonds) in the material. Figure 5.33 shows the total neutron correla-
tion function, Texp(r), which was measured for a sample of U4O9 [160]. The first two

peaks at around 2.33 Å and 2.66 Å arise from U–O and O–O correlations, respectively.
It is important to note that ND is sensitive to all atomic pairs in the sample, and there is
no possibility of a portion of the sample that is spectroscopically invisible. Figure 5.33a
also shows a simulation of the total neutron correlation function, TConr(r), calculated
according to the results of the XAFS study [163]. Firstly, it should be noted that whereas
the XAFS results give rise to a peak at 1.76 Å due to oxo bonds, there is no such peak
in the ND measurement. Figure 5.33b shows a simulation of the total neutron correla-
tion function, TXTAL(r), calculated from the known crystal structure of U4O9 using the
XTAL program [128,129], and Figure 5.33c shows the three partial contributions to the
simulation. This simulation gives a fairly good account of the observed Texp(r); there are
small differences, which may arise because the local structure is not exactly the same as
the average structure. Nevertheless, the similarity of peak areas shows that the observed
Texp(r) is consistent with a coordination number, nUO, similar to that of the crystallo-
graphic result. The XAFS results are sensitive to U–O and U–U correlations, but not
O–O correlations. In practice, this means that the XAFS simulation, TConr(r), in Fig-
ure 5.33a should give a full account of the experimental correlation function only in the
region of the U–O peak at around 2.33 Å. However, the XAFS results underestimate
the area under Texp(r) in this region by a factor of order two, that is, the XAFS results
severely underestimate the U–O coordination number. Thus the ND results [160] do not
support the structural conclusions based on the XAFS results [163]; no evidence was
found for oxo bonds or a glassy component of the structure in U4O9.

An important reason why XAFS studies can give highly inaccurate coordination
numbers is that there is a very high correlation between the coordination number and the
variation in bond length. This high correlation arises because of the lack of information in
the low momentum transfer region for XAFS results. For the simulation shown in Figures
5.33b and c, the thermal variation in interatomic distances was adjusted empirically to
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optimize the agreement with the experimental measurement, leading to ⟨u2
U−U⟩1∕2 =⟨u2

O−O⟩1∕2 = 0.1 Å and ⟨u2
U−O⟩1∕2 = 0.13 Å [160]. These values are in contrast to the

Debye–Waller factors from the XAFS experiment which are typically 0.045 Å [163].
Thus the probable reason for the highly inaccurate coordination numbers from the XAFS
study is that a poor value was chosen for the Debye–Waller factor, and indeed an earlier
XAFS study [164] of U4O9 used Debye–Waller factors in closer agreement with those
obtained from the crystallographic simulation, TXTAL(r), and also gave coordination
numbers which are closer to the expected values.

Considerable structural insight can be gained by making a detailed comparison of a
measured correlation function for a glass with the simulation for a related crystal struc-
ture. The model correlation function, TXTAL(r), shown in Figure 5.33b was calculated
using the program XTAL [128] which is available on the internet [129] and can be used
to simulate neutron or X-ray correlation functions for either crystalline or non-crystalline
model structures. For PDF studies of crystalline materials other programs are also avail-
able. These include the program PDFfit [165], which essentially performs a structural
refinement in real space (although the crystallographic symmetry is not maintained),
and the program RMCprofile [166], which may be used to perform an RMC simulation
for a crystalline structure.
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phenomenes ultramicroscopiques,” Ann. Phys. (Paris) 12, 161–237 (1939).

55. G. Porod, “Die Rontgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen 1.
Teil,” Kolloid Z.Z. Polym. 124, 83–114 (1951).

56. H.D. Bale and P.W. Schmidt, “Small-angle x-ray-scattering investigation of submicroscopic
porosity with fractal properties,” Phys. Rev. Lett. 53, 596–599 (1984).

57. J. Teixeira, “Small-angle scattering by fractal systems,” J. Appl. Cryst. 21, 781–785 (1988).

58. A.C. Hannon, A.C. Wright, and R.N. Sinclair, “The atomic and magnetic structure of melt-
spun amorphous Dy7Ni3,” Mat. Sci. Eng. A 134, 883–887 (1991).

59. C. Janot and B. George, “Surface-states and magnetic heterogeneity in iron-based glasses,”
Journal De Physique Lettres 46, L85–L88 (1985).

60. B. Rodmacq, P. Mangin, and A. Chamberod, “Contribution to SANS of the surface-state of
Pd80Si20 amorphous-alloys,” J. de Phys. Coll. 46, 499–503 (1985).

61. D.T. Bowron, A.K. Soper, K. Jones, S. Ansell, S. Birch, J. Norris, L. Perrott, D. Riedel, N.J.
Rhodes, S.R. Wakefield, A. Botti, M.A. Ricci, F. Grazzi, M. Zoppi, “NIMROD: The Near
and InterMediate Range Order Diffractometer of the ISIS second target station,” Rev. Sci.
Instrum. 81, 033905 (2010).

62. S.F. Mughabghab, M. Divadeenam, and N.E. Holden, Neutron Cross Sections. Vol. 1. Neutron
Resonance Parameters and Thermal Cross Sections. Part A, Z = 1–60., Academic Press,
New York, 1981.

63. S.F. Mughabghab, Neutron Cross Sections. Vol. 1. Neutron Resonance Parameters and
Thermal Cross Sections. Part B. Z = 61–100., Academic Press, New York, 1984.

64. E.R. Barney, A.C. Hannon, D. Holland, N. Umesaki, M. Tatsumisago, R.G. Orman, and S.
Feller, “Terminal oxygens in amorphous TeO2,” J. Phys. Chem. Lett. 4, 2312–2316 (2013).

65. W.S. Howells and A.C. Hannon, “LAD, 1982-1998: The first ISIS diffractometer,” J. Phys.:
Condens. Matter 11, 9127–9138 (1999).

66. J.E. Shelby, “Diffusion and solubility of water in alkali borate melts,” Phys. Chem. Glasses
44, 106–112 (2003).

67. J.E. Shelby, “A limited review of water diffusivity and solubility in glasses and melts,” J.
Am. Ceram. Soc. 91, 703–708 (2008).



JWBS168-c05 JWBS168-Affatigato Printer: Yet to Come September 1, 2015 19:32 Trim: 6.125in X 9.25in

REFERENCES 235

68. H. Yang, R.I. Walton, S. Antonijevic, S. Wimperis, and A.C. Hannon, “Local order of
amorphous zeolite precursors from 29Si{1H} CPMAS and 27Al and 23Na MQMAS NMR
and evidence for the nature of medium-range order from neutron diffraction,” J. Phys. Chem.
B 108, 8208–8217 (2004).

69. A.K. Soper, “Future perspectives for liquids and amorphous materials diffraction at ISIS,”
Inst. Phys. Conf. Ser. 97, 353–366 (1989).

70. T. Yamanaka, R. Kurashima, and J. Mimaki, “X-ray diffraction study of bond character of
rutile-type SiO2, GeO2 and SnO2,” Z. Kristallogr. 215, 424–428 (2000).

71. D.C. Palmer and M. Conley, CrystalMaker, CrystalMaker Software Ltd., Oxfordshire, UK.
2013.

72. A. Paul, J.D. Donaldson, M.T. Donoghue, and M.J.K. Thomas, “Infrared and 119Sn
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